Options
Electric quadrupole moments of light nuclei and transition probabilities for them in the multiquantum approximation of the orthogonal scheme
Date Issued |
---|
2007 |
A method for calculating electric quadrupole moments of light nuclei and probabilities of electric quadrupole transitions in them in the multiquantum approximation of the orthogonal scheme is proposed. Specific calculations of these quantities are performed for the 4 8 Be nucleus with allowance for all U(3(A − 1)) states characterized by the λ = [44] Young diagram, the quantum numbers K min and K min + 2 of the O(3A − 1)) group, and the number E = K + 2N (N = 0, 1, …, 9) of oscillator quanta. It is shown that an extension of the basis from the E = K min to the E = K min + 2 approximation leads to an increase of 15 to 45% in the electric quadrupole moments and to an increase in the transition probabilities B(E2) by a factor of 1.6 to 2.8. The inclusion of E = K + 2N (N = 0, 1, …), states involving multiquantum excitations (ρ excitations) increases additionally the results by 10 to 30%. The results of these calculations are compared with their counterparts obtained in the multiquantum approximation of the unitary scheme.