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A B S T R A C T   

The simultaneous remote estimation of biogeochemical parameters (BPs) and inherent optical properties (IOPs) 
from hyperspectral satellite imagery of globally distributed optically distinct inland and coastal waters is a 
complex, unsolved, non-unique inverse problem. To tackle this problem, we leverage a machine-learning model 
termed Mixture Density Networks (MDNs). MDNs outperform operational algorithms by calculating the 
covariance between the simultaneously estimated products. We train the MDNs on a large (N = 8237) dataset of 
co-aligned, in situ measured, hyperspectral remote sensing reflectance (Rrs), BPs, and absorbing IOPs from 
globally representative optically distinct inland and coastal waters. The estimated IOPs include absorption due to 
phytoplankton (aph), chromophoric dissolved organic matter (acdom), and non-algal particles (anap). The esti
mated BPs include chlorophyll-a, total suspended solids, and phycocyanin (PC). MDNs dramatically reduce 
uncertainty in the retrievals, relative to operational algorithms, when using a 50/50 dataset split, where the 
MDNs are trained on a randomly selected half of the in situ dataset and validated on the other half. Our model is 
shown to have higher, or equivalent, generalization performance than the calculated operational algorithms 
available for all BPs and IOPs (except PC) via a leave-one-out cross-validation assessment. The MDNs are sen
sitive to uncertainties in the hyperspectral satellite Rrs, resulting from instrument noise and atmospheric 
correction; there is a difference of ~37.4–62.8% (using median symmetric accuracy) between the MDNs’ esti
mates derived from co-located satellite-derived Rrs and in situ Rrs. Of the IOPs, acdom and anap are less sensitive to 
uncertainties in hyperspectral satellite imagery relative to aph, with remote estimates of aph exhibiting incorrect 
spectral shape and magnitude relative to in situ measured IOPs. Despite the uncertainties in satellite derived Rrs, 
the spatial distributions of BPs and IOPs in MDN-derived product maps of Lake Erie and the Curonian Lagoon, 
based on imagery taken with the Hyperspectral Imager for the Coastal Ocean (HICO) and PRecursore Iper
Spettrale della Missione Applicativa (PRISMA), are confirmed via co-aligned in situ measurements and agree with 
the literature’s understanding of these well-studied regions. The consistency and accuracy of the model on HICO 
and PRISMA imagery, despite radiometric uncertainties, demonstrate its applicability to future hyperspectral 
missions, such as the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, where the simultaneous 
estimation model will serve as a key part of phytoplankton community composition analysis.   
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1. Introduction 

Multi- and hyperspectral satellite imagery can supplement in situ 
measurements, to achieve the spatiotemporal resolutions required to 
monitor inland and coastal aquatic ecosystem health, through the 
remote estimation of optically relevant biogeochemical parameters 
(BPs) and inherent optical properties (IOPs) (Binding et al., 2021; Devlin 
et al., 2013; El Serafy et al., 2021; Gohin et al., 2008; Schaeffer et al., 
2013). The remote estimation of these BPs and IOPs in inland and 
coastal waters, on global scales, is complicated by a variety of factors. 
The first major factor is that the inverse problem (estimating BPs from 
hyperspectral imagery) is non-unique (particularly in optically complex 
inland and coastal waters), meaning multiple different combinations of 
BPs and IOPs in the water column can be associated with the same 
hyperspectral signal (Defoin-Platel and Chami, 2007). The second major 
factor is that on global scales these optically complex inland and coastal 
waters consist of a range of optical water types (Mélin and Vantrepotte, 
2015; Spyrakos et al., 2018), so inversion algorithms designed to 
retrieve BPs and IOPs for one region may not generalize well to other 
optically distinct regions. Therefore, these inversion algorithms must be 
validated on a globally representative dataset (Palmer et al., 2015). The 
third major factor is that uncertainties in the hyperspectral imagery 
(such as instrument noise and imperfect atmospheric correction) can 
further impact the applicability of inversion algorithms designed from in 
situ measurements (Ibrahim et al., 2018; Moses et al., 2012; O’Shea 
et al., 2021). Although many alternative remote sensing algorithms exist 
for estimating individual BPs and IOPs (Section 2), and even the 
simultaneous estimation of many of these BPs and IOPs, their capability 
to generalize on optically distinct inland and coastal water bodies and to 
perform sufficiently well despite the uncertainties in hyperspectral sat
ellite imagery has not been assessed. 

The spectral scattering and absorbing IOPs, which are shaped by the 
absorption and scattering properties of the optically relevant BPs, 
determine the upwelling spectral radiance (color) of water. Satellite 
imagers can remotely estimate IOPs and BPs by applying spectral algo
rithms to the remote sensing reflectance (Rrs(λ), where λ is the wave
length; hereafter (λ) will be dropped for brevity), which is defined as the 
normalized water-leaving radiance (corrected for atmospheric and solar 
geometry effects and set to the mean earth sun distance) divided by the 
mean extraterrestrial solar irradiance. Absorbing IOPs can be parti
tioned into water, phytoplankton, chromophoric dissolved organic 
matter (CDOM), and non-algal particles (NAP). Pure water absorption 
and its temperature dependence is well known in the visible part of the 
spectrum and can be easily removed from the total absorption (Pope and 
Fry, 1997). Phytoplankton absorption is a combination of the spectral 
absorption of all pigments, the proportions of which vary by species and, 
therefore, can offer a method for assessing phytoplankton community 
composition (Catlett and Siegel, 2018; IOCCG, 2014). One such 
pigment, chlorophyll-a (chla), is ubiquitous to phytoplankton and 
commonly serves as a proxy for total phytoplankton biomass (Huot 
et al., 2007; Paltsev and Creed, 2022), though this relationship may be 
altered by factors such as community composition (Kasprzak et al., 
2008). Absorption by CDOM is composed of the dissolved component 
(operationally defined as <0.2 μm) of chromophoric organic matter. 
CDOM is sourced, in part, from decaying leaves in lakes and rivers and 
decomposing phytoplankton in the ocean, which shape the absorption 
spectrum differently, and thus can serve as a metric for dissolved organic 
matter (DOM) source and composition (Carder et al., 1989; Grunert 
et al., 2018). Absorption by non-algal (non-pigmented) particles (often 
operationally defined as >0.2 μm) includes absorption due to (non- 
pigmented) phytoplankton cells as well as terrestrial and biogenic 
inorganic minerals (e.g., silt and calcite, respectively). NAP absorption at 
443 nm is highly correlated to the total suspended solids (TSS) con
centration, and the slope of their regression may vary with inorganic 
versus organic composition (Babin, 2003; Binding et al., 2008). In 
summary, this suite of optically relevant BPs and IOPs can serve as a set 

of diverse proxies, providing a more complete picture of aquatic 
ecosystem health via the composition and abundance of its constituents. 

The community composition and abundance of phytoplankton, a 
metric of such aquatic ecosystem health, can be assessed via measure
ments such as the hyperspectral absorption spectrum and individual 
pigment concentrations. The hyperspectral phytoplankton absorption 
spectrum (aph), which is a combination of the absorption of all phyto
plankton pigments, can be estimated from hyperspectral remote sensing 
measurements (IOCCG, 2014). Individual pigments and phytoplankton 
size classes can be estimated directly from their absorption spectra using 
multilayer perceptrons (Bricaud et al., 2007). Additionally, remotely 
estimated aph can serve as input to algorithms to estimate the phyto
plankton community composition (Catlett and Siegel, 2018; IOCCG, 
2014). While pigment compositions of aph vary greatly between species, 
two important pigments for water quality management include chloro
phyll-a (chla) and phycocyanin (PC). PC is a pigment specific to (pri
marily) freshwater cyanobacteria, a type of aquatic organism that can 
produce dangerous toxins, and can, therefore, serve as a proxy for po
tential toxin-producing harmful algal blooms (HABs). Optically, chla 
absorbs in the blue and red sections of the spectrum and fluoresces in the 
red (peak ~685 nm), whereas PC absorbs in the orange (620 nm) and 
fluoresces in the red (650 nm) (Becker et al., 2002; Dekker, 1993; 
Mobley, 2022; Schalles and Yacobi, 2000). In addition to serving as 
proxies for aquatic organisms, these pigments can heat the sea surface 
through enhanced absorption (Kahru et al., 1993), creating ideal con
ditions for further blooms. Overall, the abundance and community 
composition of phytoplankton can be estimated via their unique spectral 
signatures, which are defined by their pigment composition. 

CDOM is the optically relevant component of dissolved organic 
matter. CDOM exhibits highest absorption in the blue bands, and this 
absorption exponentially decreases towards the red (Mobley, 2022; 
Twardowski et al., 2004). The light absorption by CDOM thereby limits 
light availability for primary production in benthic and pelagic envi
ronments and heats the sea surface (Campbell et al., 2002; Chang and 
Dickey, 2004; Hill, 2008). By leveraging the spectral absorption signal of 
CDOM (acdom), both DOM source and composition can be estimated 
(Carder et al., 1989; Grunert et al., 2018). CDOM also serves as a proxy 
for the main source of carbon available for primary production, dis
solved organic carbon (DOC) (Hestir et al., 2015; Mannino et al., 2008; 
Spencer et al., 2012) and as a proxy for salinity in coastal ecosystems 
(Bowers and Brett, 2008). The lack of operationally available remote- 
sensing-retrieved spectral CDOM and NAP absorption may lead to 
inaccurate phytoplankton carbon fixation estimates for freshwater eco
systems with significant CDOM and/or NAP absorption (Sayers et al., 
2021). To summarize, CDOM has a complex relationship with aquatic 
ecosystem health; as increases in DOM can provide heat and nutrients 
required for blooms, but also limit light availability for primary 
production. 

Much like CDOM absorption, NAP absorption is exponentially 
decaying as a function of wavelength, with highest absorption in the UV 
and blue sections of the spectrum, and, therefore, has similar impacts on 
light availability in aquatic ecosystems (Mobley, 2022). Although the 
slope of NAP absorption has a narrow range of variations in coastal re
gions relative to its magnitude, it may be relatable (regionally) to the 
proportion of organic versus mineral components or to the composition 
of organic particles (Babin, 2003; Bélanger et al., 2013; Bricaud et al., 
2010). However, in practice, relating the slope of NAP absorption to the 
proportion of organic to inorganic matter may vary regionally. In Lake 
Erie higher slopes had a larger proportion of inorganic matter, whereas 
in European coastal waters the opposite was true (Babin, 2003; Binding 
et al., 2008). 

TSS is composed of both organic (phytoplankton cells and non-algal 
particles) and inorganic (primarily mineral soil particles) fractions. 
Scattering by TSS varies depending on the specific constituents, however 
both non-algal particles and minerals have been shown to have high 
scattering in the red and near-infrared (NIR) (Mobley, 2022; Stramski 
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et al., 2007; Sun et al., 2010). The red and NIR sections of the spectrum 
are minimally impacted by CDOM or phytoplankton absorption, making 
these sections of the spectrum ideal for remote sensing in optically 
complex waters (particularly at higher TSS concentrations (Novoa et al., 
2017)). TSS is an important parameter to measure remotely, as TSS 
transports both trace elements (including heavy metals) and nutrients 
(Horowitz, 2008). Additionally, particulate organic carbon (the phyto
plankton cell and non-algal particle fractions of TSS) is a major 
contributor to the carbon budget. Since TSS is transported via fluid 
motion, it can be used with geosynchronous satellites to track seawater 
circulation in turbid coastal waters (Yang et al., 2014), including sedi
ment discharge and circulation in estuaries surrounding river mouths 
(Baban, 1995). Finally, TSS can serve as a proxy for water clarity, and 
has been used to study the impact of macroalgae on water clarity in 
turbid lakes using airborne remote sensing (Giardino et al., 2015). 
Concisely, TSS can be measured remotely via its scattering in the red and 
NIR, and serve as a proxy for, among other parameters, nutrient avail
ability and water clarity. 

The most developed semi- and quasi-analytical models that simul
taneously estimate absorption due to phytoplankton, CDOM, and non- 
algal particles were designed for open ocean waters (Lee et al., 2002; 
Werdell et al., 2013). The models have been reparameterized for inland 
and coastal waters, either by shifting reference wavelengths in the red to 
the NIR or utilizing field data for regional tuning (Najah and Al-Shehhi, 
2021; Yang et al., 2013). Unfortunately, these reparameterized models 
still fail to estimate specific parameters in many inland and coastal 
waters (Najah and Al-Shehhi, 2021). Since reparameterization of exist
ing semi- and quasi-analytical models is insufficient to solve this com
plex non-unique inverse problem (Defoin-Platel and Chami, 2007; Sydor 
et al., 2004), additional constraints may be required to simultaneously 
estimate these IOPs and BPs in globally distributed optically unique 
inland and coastal waters. 

MDNs solve non-unique inverse problems, such as estimating BPs 
from Rrs, by modeling the probability distribution of the outputs as a 
mixture of Gaussians (Bishop, 1994, 1995). MDNs then select the pre
diction with the highest likelihood of occurrence, instead of the average 
typically reported by multilayer perceptrons, to get a better overall es
timate from the multimodal output space. Dedicated MDNs can estimate 
individual BPs such as chla (Pahlevan et al., 2020, 2021; Smith et al., 
2021), TSS (Balasubramanian et al., 2020), PC (O’Shea et al., 2021), and 
aph (Pahlevan et al., 2021) from both multispectral and hyperspectral 
satellite data, in inland and coastal waters. In fact, the same architecture 
has been successfully applied to simultaneously estimate two BPs and an 
IOP at a single wavelength (chla, TSS, and acdom(440)) (Pahlevan et al., 
2022). In addition to better fitting the multimodal output space for 
multiple BPs and IOPs, MDNs also have the key feature of estimating 
uncertainties of their predictions from the covariance matrices of the 
Gaussian mixture model (Brando Guillaumes, 2017; Choi et al., 2018; 
Saranathan et al., 2023). The pixel-by-pixel uncertainty product is a key 
requirement for a reliable interpretation of biogeochemical models that 
leverage aquatic science products (e.g., chla) (Gould et al., 2014; Sheng 
et al., 2014; Werdell et al., 2018) and for water quality management 
using satellite products (IOCCG, 2019). Overall, through their proven 
efficacy for the non-unique inverse estimation of available BPs and IOPs 
and their inherent ability to estimate uncertainties, MDNs are well 
suited for simultaneous retrievals of multiple BPs and IOPs for scientific 
and water quality management applications. 

In preparation for hyperspectral observations by the Ocean Color 
Instrument (OCI) from the Plankton, Aerosol, Cloud, ocean Ecosystem 
(PACE) mission, this manuscript aims at demonstrating and validating 
an inversion scheme (MDNs) to enable the generation of viable products 
for aquatic science and applications across global inland and coastal 
waters. This manuscript builds upon previous research (O’Shea et al., 
2021; Pahlevan et al., 2021, 2022), by creating MDNs that simulta
neously estimate both relevant BPs (chla, TSS, and PC) and absorbing 
IOPs (phytoplankton, NAP, and CDOM) from hyperspectral imagery. 

The MDNs are validated for product generation on the globally repre
sentative in situ dataset via a leave-one-out regional cross-validation 
analysis and comparison to operational algorithms. Finally, the MDN- 
derived products are demonstrated for use on hyperspectral missions 
(e.g., PACE), via comparing in situ radiometric and biogeochemical/IOP 
measurements to product maps produced from imagery from heritage 
and current hyperspectral imagers (the Hyperspectral Imager for the 
Coastal Ocean (HICO) and the Italian Space Agency’s (ISA’s) PRecursore 
IperSpettrale della Missione Applicativa (PRISMA), respectively). The 
simultaneous estimation of BPs and absorbing IOPs from hyperspectral 
imagery via MDNs will serve a key role in phytoplankton community 
composition identification. 

The manuscript is structured as follows. The Background section 
(Section 2) builds upon the Introduction (Section 1) to provide a more 
in-depth review of absorbing IOPs and retrieval algorithms. The Datasets 
section (Section 3) covers the spatial distribution and concentration 
range of the available in situ BPs, IOPs, and associated imagery for 
training and validating the MDN. The Methods section (Section 4) de
scribes the MDN architecture and performance assessment. The Results 
section (Section 5) reports the performance of the MDN relative to 
operational algorithms over a variety of assessments. The Discussion 
section (Section 6) compares the presented MDN to previously devel
oped dedicated models, identifies the major drivers of uncertainty in the 
model predictions, and discusses implications and future directions. 
Finally, the Conclusions section (Section 7) summarizes the improve
ments the presented model makes over the state-of-the-art for estimation 
of BPs and IOPs, and how this will impact key goals of future hyper
spectral missions (e.g., PACE). 

2. Background 

IOPs include the absorption (a), scattering (b), and total attenuation 
(c) of water and its constituents at a wavelength (λ) (Eq. 1). IOPs do not 
vary under changing illumination conditions. 

a(λ)+ b(λ) = c(λ) (1) 

Total absorption can be further broken down into absorption of 
water (aw, known (Pope and Fry, 1997)) and the optically active con
stituents within the water column, including: absorption due to phyto
plankton pigments (aph), absorption due to chromophoric dissolved 
organic matter (acdom), and absorption due to non-algal particles (anap) 
(Eq. 2, (Mobley, 2022)). 

a(λ) = aw(λ)+ aph(λ)+ acdom(λ)+ anap(λ) (2) 

While acdom and anap are functions of wavelength (λ), they are often 
represented (in the visible) by a decreasing exponential (Eq. 3) using 
only their magnitude at a specific wavelength (λ0, often ~440 nm) and 
slope (S, labeled as S-CDOM and S-NAP for CDOM and NAP, respec
tively) (Mobley, 2022; Twardowski et al., 2004). 

acdom(λ) = acdom(λ0) e− S(λ− λ0) (3) 

Since acdom and anap can both be fit by a decreasing exponential, and 
are often hard to deconvolve from one another, they are sometimes 
combined and represented as a single decreasing exponential (adg) (Cael 
and Boss, 2017). 

Total scattering can be broken down into forward scattering and 
backward scattering. The backscattering coefficient (bb(λ)) is most 
relevant from a remote sensing perspective, as it controls the magnitude 
of light backscattered into satellite imagery. Total spectral backscat
tering is assumed to be defined by water (bbw(λ), known, also a function 
of salinity (Zhang et al., 2009)), and particles (bbp(λ)), while dissolved 
constituents other than dissolved ions are assumed not to contribute (Eq. 
4 (Werdell et al., 2013)). 

bb(λ) = bbw(λ)+ bbp(λ0)

(
λ0

λ

)ɳ

(4) 
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where λ0 is a constant wavelength, and ɳ is the exponential slope (often 
estimated via an empirical relationship (Lee et al., 1996, 1999)). 

The quasi-analytical algorithm (QAA) is one of the most commonly 
used semi-analytical algorithms in the ocean-color community for global 
IOP retrievals from Rrs(λ) (Le et al., 2009; Lee et al., 2002, 2023; Pan 
et al., 2015). QAA is a two step inversion process which first derives the 
total absorption and backscattering (without leveraging assumed spec
tral signatures of the individual components) for optically deep waters, 
before deriving the specific absorption magnitudes of each of the water 
constituents. First, the total backscattering at a reference wavelength 
(bb(λ0), Eq. 4) can be solved for by leveraging the Rrs at a known 
wavelength via one of two relationships, either Morel and Maritorena, 
2001 (λ0 = 555 nm) for open ocean and most coastal waters or Lee et al., 
2002 (λ0 = 640 nm) for high absorption (>0.5 m− 1) waters, or a com
bination of the two for total absorptions between 0.3 and 0.5 m− 1. 
Second, the total backscattering at the reference wavelength (bb(λ0)) can 
then be derived from solving Eq. 5 with the absorption for the specific 
reference wavelength, as bbw(λ) and ɳ are known. Total spectral back
scatter (bb(λ), Eq. 4) can then be derived as a function of wavelength 
(Gordon and Morel, 1983; Smith and Baker, 1981), as the exponential 
slope can be estimated from the remote-sensing reflectance just below 
the surface (Lee et al., 2002). Now a(λ) can be derived via Eq. 5, as the 
Rrs(λ) and bb(λ) are known. 

u[Rrs(λ) ] =
bb(λ)

a(λ) + bb(λ)
(5)  

where u[] is an empirical model that is a function of Rrs(λ) (Gordon 
et al., 1988; Lee et al., 1999). Finally, spectral decomposition of the total 
absorption into aph and adg is performed by relating these terms to each 
other at two specific wavelengths (411 and 443 nm). This algorithm 
leverages models and empirical relationships that may not hold in all 
optically distinct aquatic regions. 

An alternative, and perhaps even more commonly used IOP inversion 
technique, developed by the Ocean Biology Processing Group and 
implemented in NASA’s data processing pipeline (Najah and Al-Shehhi, 

2021; Werdell et al., 2013), is the Generalized IOP (GIOP) algorithm. 
The GIOP algorithm provides a framework for evaluating parameteri
zations of the many similarly formulated semi-analytical algorithms 
(SAAs) (Werdell et al., 2013). Therefore, GIOP can be reparameterized 
and tuned to specific regions, by adjusting parameters such as the 
phytoplankton-specific absorption coefficient (phytoplankton absorp
tion normalized by the chla concentration) and the combined CDOM 
and NAP slope (Favareto et al., 2018). Although not originally designed 
for coastal and inland waters, reparameterization could improve GIOPs 
performance in these regions. 

Although QAA and GIOP were not originally designed or validated 
for turbid coastal and inland waters, many studies have performed 
validation approaches in globally distributed coastal and inland waters, 
and found regional adaptations to their algorithms can be made to 
improve performance (Najah and Al-Shehhi, 2021). Specifically, QAA 
has been applied to many turbid inland lakes in China (Le et al., 2009; 
Chu et al., 2020; Wei et al., 2016), where shifting the reference wave
length from the red to the NIR, or using multiple reference wavelengths 
(Pan et al., 2015), improved overall performance. This algorithm has 
also been applied, and the empirical relationships modified, for more 
accurate retrievals from coastal regions in the Yellow and East China 
Seas (Qing et al., 2011). GIOP has also been both applied and validated 
in coastal and inland waters (Aguilar-Maldonado et al., 2019). Though 
minimal adaptations have been performed for GIOP, it is possible that 
regional tuning of the phytoplankton-specific absorption, and NAP, 
CDOM, and particulate backscattering spectral slopes could improve 
regional performance (Favareto et al., 2018). Although the QAA and 
GIOP performed well in certain coastal and inland waters, with some 
adaptations, there were also regions experiencing poor performance, 
including the coastal waters of Australia, Bay of Bengal, Gulf of Cali
fornia, and Chesapeake Bay, to name a few (Betancur-Turizo et al., 2018; 
Lotliker et al., 2015; Najah and Al-Shehhi, 2021; Qin et al., 2007; Zheng 
and DiGiacomo, 2018). While QAA and GIOP can be regionally tuned, if 
suitable in situ datasets are available, these algorithms are not ideal for 
application to all turbid coastal and inland waters, on a global scale. We 

Fig. 1. Global distribution of in situ measured Rrs and co-located BPs and IOPs. Red diamonds show in situ BPs and IOPs co-aligned with in situ Rrs, cyan circles show 
in situ BPs and IOPs co-aligned with satellite-derived Rrs, yellow triangles show in situ Rrs co-aligned with satellite-derived Rrs. Not all samples of the in situ dataset 
have associated latitude and longitude measurements. The basemap was retrieved from: https://www.naturalearthdata.com/. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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compare these algorithms against our own model in this research as they 
are widely used and their performance on inland and coastal waters is 
well documented in the literature. 

Direct retrieval of specific BPs, such as pigments, from optically 
complex inland and coastal waters can be a much simpler process that 
generally relies on empirical relationships leveraging spectral band ra
tios. These band ratios focus on bands with unique spectral features 
associated with a specific pigment while avoiding spectral overlap with 
those of other optically relevant constituents, such as absorption or 
fluorescence characteristics of other pigments, which can change 

independently in optically complex inland and coastal waters. For chla 
estimation in inland and coastal waters, instead of using the blue and 
green bands typical for chla retrievals from open ocean waters, retrieval 
algorithms focus on band ratios between the red and NIR (Gilerson et al., 
2010). Band ratios in the red (e.g., 665 nm) and NIR (e.g., 709 nm) are 
minimally impacted by CDOM and NAP absorption in these optically 
complex waters. For coastal regions that undergo algal blooms, varia
tions can span three orders of magnitude, so blended switching algo
rithms have been developed that leverage the blue-green relationship at 
lower concentrations, and red-NIR at higher concentrations (associated 
with a higher NIR-red ratio) (Smith et al., 2018). Early phycocyanin 
algorithms leveraged the pigment’s fluorescence (650 nm) and absorp
tion (620–625 nm) peaks via a simple band ratio (Dekker, 1993; Schalles 
and Yacobi, 2000), but further advances implemented correction for 
absorption by chla in these bands by leveraging the red (665 nm) and 
NIR (709 nm) bands (Simis et al., 2005, 2007). In even more optically 
complex inland waters, with wide variations in accessory pigments, 
their spectral overlap with the respective signatures of PC and chla can 
further limit an algorithm’s applicability, leading to an overestimation 
of PC (Ruiz-Verdú et al., 2008; Simis et al., 2007). Retrieval of TSS is also 
more complex in coastal and inland waters, where concentrations can 
span up to three orders of magnitude. While single-band algorithms 
leveraging red wavelengths (665 nm) can work well (Nechad et al., 
2015), algorithms can also switch between using single band algorithms 
in the green, red, and NIR bands to attempt to achieve the highest 
possible accuracy in their retrievals (Novoa et al., 2017). Although these 
empirical relationships work well in multi-band operational algorithms, 
leveraging the full hyperspectral signal via machine learning models has 
increased the retrieval accuracy from globally distributed optically 
complex inland and coastal waters (O’Shea et al., 2021; Pahlevan et al., 
2022). 

3. Datasets 

3.1. In situ Rrs, BPs, and absorbing IOPs 

Our model development dataset (N = 8237 for HICO) consists of 
globally distributed (Fig. 1) samples of in situ Rrs (approximated as the 
water leaving radiance divided by the downwelling solar irradiance 
(Gordon and Voss, 2004; Mobley, 2022; Mobley, 1999)) co-located with 
at least one biogeochemical parameter (chla, PC, TSS, or CDOM) or IOP 
(aph, anap, or acdom). Retrievals of the majority of the BPs and IOPs have 
been previously described in a variety of publications, each with maps of 
individual parameters by region (Balasubramanian et al., 2020; Jiang 
et al., 2021; O’Shea et al., 2021; Pahlevan et al., 2021, 2022; Smith 
et al., 2021). Our dataset (Table 1) augments the chla, TSS, and CDOM 
presented in the GLObal Reflectance community dataset for Imaging and 
optical sensing of Aquatic environments (GLORIA) (Lehmann et al., 
2023) with PC and spectral IOPs (aph, anap, or acdom). Additional datasets 
including IOPs come from a variety of globally distributed waters, either 
directly from contributors, or via compiled datasets (Casey et al., 2019; 
Nechad et al., 2015; Werdell and Bailey, 2002). 

Some previously presented datasets were also pruned, including data 
from Dutch Lakes and data from coastal estuaries of the south and east 
U.S. coasts. Repeat PC measurements associated with each Rrs were 
removed from the Dutch Lakes dataset. Suspicious outliers were 
removed from the predominantly south and east U.S. coastal waters 
dataset (contributed by John F. Schalles). 84 suspicious outliers were 
removed, these samples had an Rrs(410)/Rrs(450) > 1.5 and at least one 
wavelength that did not agree with previously measured ocean color 
values (i.e., they had a quality assurance score of <1, a metric assessing 
the proportion of spectral Rrs that agree with previously measured ocean 
color values (Wei et al., 2016)). 

Total samples for each Rrs and BP/IOP pair are: 5740 for chla, 5312 
for TSS, 5165 for CDOM (acdom at 440 nm), 940 for PC, 2425 for aph, 
2289 for anap, and 2764 for acdom (at any wavelength). We output two 

Table 1 
Location, number of samples, and provider of datasets added to GLORIA. If a 
dataset was already within GLORIA, but it was augmented with at least one 
spectral IOP, the number of samples is followed by: (IOPs).  

Region Location Samples Provider 

Global Global waters 289 Various providers (via 
SeaBASS) 

Asia Xingyun Lake (China) 19 Ronghua Ma & Zhigang 
Cao  

Taihu Lake (China) 303 Ronghua Ma & Zhigang 
Cao  

Vietnamese lakes 185 Hà Nguyễn  
Chinese & Japanese lakes 26 

(IOPs) 
Bunkei Matsushita & 
Dalin Jiang  

Indonesian waters 118 CoastColour (Nechad 
et al., 2015) 

Europe Curonian Lagoon 
(Lithuania) 

55 Diana Vaičiūtė  

French and Belgian 
estuaries 

79 David Doxaran & Kevin 
Ruddick  

Lake Trasimeno (Italy) 10 Claudia Giardino  
North Sea 48 CoastColour (Nechad 

et al., 2015)  
Dutch lakes 72 

(IOPs) 
Stefan G. H. Simis  

Lake Kummerow 
(Germany) 

26 
(IOPs) 

Natascha Oppelt  

Italian lakes 73 
(IOPs) 

Claudia Giardino 
& Mariano Bresciani  

Estonian and Swedish lakes 162 
(IOPs) 

Krista Alikas, Kersti 
Kangro, 
& Martin Ligi 

North 
America 
(N.A.) 

Coastal Atlantic Ocean 
bordering Chesapeake Bay 

60 Richard C. Zimmerman 
& Glenn Cota (via 
SeaBASS)  

Chesapeake Bay (U.S.) 43 Alexander Gilerson  
Chesapeake Bay (U.S.) 
& Gulf of Mexico 

208 Richard W. Gould (via 
SeaBASS)  

North American coastal 
waters (predominantly 
Gulf of Mexico) 

438 Blake Schaeffer  

Gulf of Mexico 34 Richard C. Zimmerman 
(via SeaBASS)  

Gulf of Mexico 528 Chuanmin Hu (via 
SeaBASS)  

Grizzly Bay (U.S.) 20 Cédric G. Fichot  
San Francisco Bay (U.S.) 21 Raphael Kudela  
Lake Erie (U.S.) 125 Caren Binding  
Great Lakes (U.S. & 
Canada) 

9 (IOPs) David M. O’Donnell  

Lake Erie (U.S.) 34 
(IOPs) 

Timothy S. Moore  

Massachusetts Bay (U.S.) 3 Nima Pahlevan  
Mississippi Aquaculture 
Ponds (U.S.) 

41 
(IOPs) 

Deepak R. Mishra 
& Sachidananda Mishra  

Indianan reservoirs (U.S.) 192 
(IOPs) 

Lin Li  

Wisconsin Lakes (U.S.) 188 
(IOPs) 

Steven R. Greb & 
Daniela Gurlin  

Nebraskan Lakes (U.S.) 183 
(IOPs) 

Anatoly A. Gitelson, 
Daniela Gurlin, & 
Wesley J. Moses 

Oceania 
(OC) 

Australian Lakes 111 
(IOPs) 

Janet Anstee & Nathan 
Drayson  
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estimates for acdom at 440 nm due to the differences in the provided/ 
measured data: 1) when acdom was measured/provided with full 
hyperspectral information (acdom, N = 2764, an IOP) or 2) when acdom 
was measured either at a single wavelength or pulled from the 
hyperspectral absorption spectrum (CDOM, N = 5165, grouped with 
BPs). As of publication, there are a small percentage of known duplicates 
and misaligned measurements within this dataset. While this serves as 
the final dataset for this manuscript, the model can be rapidly retrained 
on the evolving dataset as additional sources and quality control metrics 
are added, to improve model performance. 

Our in situ dataset (measurements with co-located Rrs spanning 
409–724 nm, predominantly at 10 nm spectral resolution) covers mul
tiple orders of magnitude of BPs and IOPs (Figs. 2 & 3), representative of 
a wide range of optically distinct waters. Chla, TSS, and CDOM each 
have >5000 samples, have a single peak, and are nearly symmetric on a 
logarithmic scale (Fig. 2). PC has a much more limited dataset (940 
samples) and is less symmetric than the other products on the loga
rithmic scale, due to a high number of samples at higher concentrations 
(~102 mg/m3). The mean and median values for each biogeochemical 
parameter are: chla (41.6 mg/m3, 10.5 mg/m3), PC (52.5 mg/m3, 15.1 
mg/m3), TSS (30.1 g/m3, 10.4 g/m3), and CDOM (1.1 m− 1, 0.55 m− 1). 
The >2200 aph, anap, and acdom measurements (Fig. 3) come from many 
optically distinct locations and different times. The target wavelengths 
for each IOP output from the model were constrained (to 409/411, 438/ 
441, 490/485, 530/530, 558/563, 627/632, 650/651, & 673/679 nm 
for anap and acdom for HICO/PRISMA, and to 409–690 nm for aph) to 
reduce model complexity. 

3.2. Co-located satellite Rrs, in situ Rrs, BPs, and IOPs 

The impact of uncertainties in radiometric products (e.g., image- 
derived Rrs) on MDN product estimates can be explored by comparing 
MDN-derived estimates from co-located in situ and satellite Rrs. We have 
assembled a dataset of 65 near-coincident (±3 h) co-located in situ, and 
SeaWiFS Data Analysis System (SeaDAS) corrected HICO Rrs from the 
Chesapeake Bay, Lake Erie, and Florida Estuaries (Casey et al., 2019; 
Keith et al., 2014; Schaeffer et al., 2015, summarized in Table 2). This 
dataset also includes co-located in situ matchups for some sampling 
stations, which allow for the direct impact assessment and comparison 
of uncertainties across product estimates, including spectral aph, anap, 
and acdom. To test the MDN on these measurements, it was trained 
without this data subset. However, the final operational MDN was 

trained on the entire dataset including these in situ measurements. 

3.3. Hyperspectral satellite imagery: HICO and PRISMA 

3.3.1. HICO 
HICO imagery (~90 m spatial resolution, ~5.7 nm spectral resolu

tion (Lucke et al., 2011)) of Lake Erie acquired on September 8th 2014 
was chosen to demonstrate the spatial consistency of the product maps 
despite uncertainties in the hyperspectral satellite imagery. This 
particular image has minimal cloud cover, and five co-located in situ chla 
and PC measurements to confirm the spatial distributions of these pig
ments. The MDN used to produce these maps was trained using the in situ 
hyperspectral dataset, except for the Lake Erie dataset containing the 
five co-located in situ chla/PC measurements, resampled using the 
spectral response function of HICO. The HICO imagery was corrected 
using the Atmospheric Correction for OLI ‘lite’ (ACOLITE 
V20221114.0), which produced fewer invalid (~0 or negative) Rrs 
(particularly in the blue bands) within the scene relative to the SeaDAS 
v7.5.3 level 2 product (not shown). The atmospheric correction flags 
were adapted to the region, and the processing options (thresholds) used 
for atmospheric correction are available in Table A1. 

3.3.2. PRISMA 
PRISMA imagery (~30 m spatial resolution, ~10 nm spectral reso

lution) of the Curonian Lagoon acquired on September 20th, 2020, 
provides a second sensor, atmospheric correction algorithm, and region 
for which to test the MDN. To produce estimates for this region, the 
MDN was retrained using the full in situ dataset, except for the Curonian 
Lagoon dataset which holds the 10 in situ chla, PC, TSS, CDOM, and 
acdom sampling stations co-located with the PRISMA imagery. The 
hyperspectral in situ dataset was resampled using the spectral response 
function of PRISMA, prior to training the MDN. The L1 top-of- 
atmosphere PRISMA imagery was re-projected using a Bowtie Correc
tion implemented in prismaread (Busetto and Ranghetti, 2020) and 
atmospherically corrected using the Atmospheric and Topographic 
Correction (ATCOR v.9.3.0) (Richter and Schläpfer, 2002). The Curo
nian Lagoon is a shallow (3.8 m average depth) fresh-to-brackish water 
lagoon (Zemlys et al., 2013), with minimal additional in situ data in the 
training dataset, making it ideal for assessing the performance of the 
model in optically distinct regions. 

Fig. 2. Histograms of chla, PC, TSS, and CDOM. Total samples (N) shown in top left of each subplot. The mean and median values for chla, PC, TSS, and CDOM are: 
(41.6 mg/m3, 10.5 mg/m3), (52.5 mg/m3, 15.1 mg/m3), (30.1 g/m3, 10.4 g/m3), and (1.1 m− 1, 0.55 m− 1), respectively. 
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4. Methods 

4.1. MDN architecture, training, and testing 

4.1.1. Overarching MDN architecture 
The MDN (Fig. 4) follows the standard architecture for the retrieval 

of individual BPs (Pahlevan et al., 2020; Smith et al., 2021) and 
simultaneous retrieval of multiple BPs (Pahlevan et al., 2022). The 
spectral Rrs (409–724 nm for HICO, Table 3) serve as inputs to the 
model. The maximum of the input wavelength range (409–724 nm) was 
chosen to allow for features in the NIR, useful for PC and chla retrieval 

(O’Shea et al., 2021; Pahlevan et al., 2022), while avoiding the higher 
wavelength oxygen-A bands. Nine band ratios (BRs) and line heights 
(LHs), listed in Table 3, are calculated from the Rrs, and also used as 
inputs to the model. The Rrs, BRs and LHs, are then normalized (scaled 
from − 1 to 1) before being run through the weights of the neural 
network (architecture described in section 4.1.2 and summarized in 
Table 4). The final layer of the MDN is a mixture of five Gaussians, each 
with their own mean (μn), standard deviation (σn), and weighting (⍺n). 
The Gaussians are input to a combination function, which adds the 
weighted probabilities derived from each of the five Gaussians together 
and then selects the highest probability estimate for each output 
parameter. The simultaneous outputs include: chla, TSS, PC, CDOM 
(acdom at 440 nm, see section 3.1), aph from 409 to 690 nm, and acdom as 
well as anap at 409/411, 438/441, 490/485, 530/530, 558/563, 627/ 
632, 650/651, & 673/679 nm for HICO/PRISMA. The output wave
lengths were constrained for aph as measurements of aph at wavelengths 
>690 nm have increased noise, which reduces the ability of the model to 
converge to an optimal solution. The output wavelengths for acdom and 
anap were constrained (to 409/411, 438/441, 490/485, 530/530, 558/ 
563, 627/632, 650/651, & 673/679 nm for HICO/PRISMA) as MDN 
complexity increases as a function of outputs due to calculation of 
covariance matrices between each product. Additionally, these eight 
wavelengths are sufficient, as they can be fit by a decreasing exponential 
(Eq. 3), and then interpolated, to estimate absorption at alternative 
wavelengths (Mobley, 2022; Mobley, 1994; Twardowski et al., 2004). 
Overall, the constrained wavelengths should not limit efficacy as 
pigment features of aph largely occur in this spectral range, and by fitting 
multispectral acdom and anap with exponential models, the hyperspectral 
acdom or anap can be interpolated or extrapolated. Training of this model 
is repeated 10 times, with different initialization weights, and the final 
estimate is the median of the estimated outputs. 

4.1.2. Hyperparameter sweep and neural network architecture 
Previous MDN training focused on single BPs (Smith et al., 2021) or 

simultaneous retrieval of only three BPs (Pahlevan et al., 2022). In each 
case, the model successfully converged using the same set of previously 
proven hyperparameters. However, training an MDN to simultaneously 
model ~55–70 outputs from multiple BPs and IOPs with the same 
hyperparameters led to poor convergence for aph (results not shown). To 
identify more viable hyperparameters, the MDN was retrained on the 
same training dataset with 375 different hyperparameter combinations 
as shown in Table 4, but only for a single training round. The hyper
parameters of the model with the lowest median of the ensemble median 
symmetric accuracy (MdSA, 30.45%, hyperparameters in Table 4, ‘Best’ 
column) over all output products (with each spectral product being 
represented by a median value taken over all bands) was chosen for final 
training of the 10 round model in the neural network block (Fig. 4) 
presented in this study. 

4.1.3. Imputation 
Not all BPs and IOPs are simultaneously measured in situ at each site. 

In our framework, a process known as multiple imputation fills in for the 
missing values (Rubin, 2004), which has been successfully proven to 
work for the simultaneous estimation of three BPs from multispectral 
satellite imagery (Pahlevan et al., 2022). In multiple imputation, m 
values are randomly selected from the distribution of the input dataset 
for the missing parameter. Instead of naively drawing from the distri
bution of the input dataset, MDNs allow us to learn the joint probability 
distribution of all target parameters and draw from the learned posterior 
probability (Fig. 4). By drawing estimates from the learned posterior 
instead of the distribution of the input dataset, multiple imputation can 
not only represent missing completely at random and missing at random 
data (King et al., 2001), but in some instances, also missing not at 
random data, where the missing data depends upon its value (van 
Buuren and Groothuis-Oudshoorn, 2011; Galimard et al., 2018). This 
may be useful in monitoring cyanobacterial blooms, where practical 

Fig. 3. Box and whisker plots of spectral aph, anap, and acdom. Only select 
wavelengths, which are used as the output of the MDN, are plotted. Figure 
differs from data in previous publication (Pahlevan et al., 2021) due to 1) 
increased dataset size and 2) increased required wavelength range for input Rrs 
(409–724 nm serve as input for our simultaneous estimation MDN). 
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limitations typically lead to sampling only in regions prone to these 
blooms, and only during peak bloom events for water quality monitoring 
decision making (Fig. 2, left-skewed distribution). The accuracy of the 
multiple imputation method improves with additional training, as the 
MDN better learns to represent the joint probability distribution of the 
target parameters. In summary, multiple imputation with MDNs more 

accurately fills in missing data, leading to a larger available dataset for 
training, and, in extension, potentially improved generalization. 

4.1.4. Calculation of S-CDOM and S-NAP from spectral acdom and anap 
S-CDOM and S-NAP can both be calculated by fitting a decreasing 

exponential (Eq. 3) to acdom and anap at the eight predicted wavelengths 

Fig. 4. A block diagram representing the MDN architecture. HICO/PRISMA spectral Rrs (with exact bands dependent on sensor) are inputs (features described in 
Table 3) to the MDN, in addition to standard band ratios (BRs) and line heights (LHs). The inputs are normalized and then run through the neural network’s weights. 
The unique feature of MDNs is their output layer, where a mixture of Gaussians, with mean (μn), standard deviation (σn), and weighting (⍺n) is formed to represent 
the output variable’s probability distribution. A combination function selects the most probable value as an estimate of the output BP/IOP. The number of outputs is 
shown in brackets for each output parameter for HICO/PRISMA. 

Table 3 
Itemized input and output features for HICO MDN and PRISMA MDN. A limited set of acdom and anap wavelengths are output (choosing the sensor band nearest to the 
ac-9 (Sea-Bird Scientific’s transmissometer) equivalent wavelengths) to reduce the required model complexity (Section 3.1).  

Input or 
output? 

Feature labels HICO Features 
(Per feature (total)) 

PRISMA Features 
(Per feature (total)) 

Input Rrs 409–724 (56) 411–719 (38) 
Input BRs ‘667/707’, ‘558/707’, ‘558/667’, ‘490/558’, ‘444/490’, ‘667/ 

621’, ‘621/558’ (7) 
‘660/709’, ‘563/709’, ‘563/660’, ‘493/563’, ‘441/493’, ‘660/ 
623’, ‘623/563’, (7) 

Input LHs ‘490–558–667’, ‘558–621–667’ (2) ‘493–563–660’, ‘563–623–660’ (2) 
Total Inputs  65 47 
Output BPs (chla, PC, TSS, 

CDOM) 
1 (4) 1 (4) 

Output acdom & anap 409, 438, 490, 530, 558, 627, 650, & 673 nm (16) 411, 441, 485, 530, 563, 632, 651, & 679 nm (16) 
Output aph 409–690 (50) 411–689 (35) 
Total 

Outputs  
70 55  

Table 2 
Matchup datasets for HICO and PRISMA imagery.  

Date (M/D/Y) Location Sensor Atmospheric Correction In-situ Matchups 

09/08/2014 Lake Erie HICO ACOLITE 5 chla & PC 
09/20/2020 Curonian Lagoon PRISMA ATCOR 10 chla, PC, TSS, CDOM, & acdom 

04/14/2010, 
06/02/2011, 
07/30/2011, 
08/24/2011, 
08/26/2011, 
09/09/2011, 
08/28/2014, 
09/08/2014 

Chesapeake Bay, Lake Erie, & Florida Estuaries HICO SeaDAS 29 aph, 23 anap, & 23 acdom 

+ 65 in-situ Rrs  
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(409/411, 438/441, 490/485, 530/530, 558/563, 627/632, 650/651, 
& 673/679 nm for HICO/PRISMA) from the MDN (Twardowski et al., 
2004). The output wavelengths for acdom and anap were chosen to stay 
within the ~400–650 nm range to 1) facilitate comparisons to computed 
slopes from an ac-9 instrument, 2) avoid artifacts in NAP at longer 
wavelengths, and 3) avoid longer wavelengths where scattering uncer
tainty may dominate the signal, as the model may not converge with 
such a low SNR target variable. 

4.2. MDN performance assessment 

An ideal performance assessment would include a comparison be
tween satellite-derived products and co-located in situ measurements 
over a globally representative dataset of optically distinct water bodies. 
Unfortunately, the practical limitations of in situ sampling and demon
stration space-borne mission overpass times make this currently infea
sible. Instead, we rely on multiple different performance metrics to gain 
an understanding of overall performance: these include a 50/50 
training/testing split, an iterative leave-one-out cross-validation 
assessment, a retrieved product comparison from co-located in situ Rrs 
and satellite Rrs, and, finally, a matchup analysis for a small dataset of in 
situ measurements and products derived from co-located satellite im
agery, described below. 

4.2.1. 50% training and 50% testing (50/50) split 
The first performance metric to characterize idealized model accu

racy is a 50% training and 50% testing split of our in situ dataset. In this 
assessment, the model is trained using a random half of the in situ 
dataset, and model performance is assessed on the test half of this 
dataset and further compared against operational algorithms for each of 
the BPs and IOPs. This performance assessment provides an idealized 
performance accuracy as 1) the test data may come from the same field 
campaigns (not different regions/seasons), 2) the MDN is trained on half 
of the data while the operational algorithms are not optimized to the 
training set (though minimal gains were found by optimizing these 
multispectral algorithms (O’Shea et al., 2021)), and 3) the radiometric 
test data (in situ Rrs) do not suffer from atmospheric correction un
certainties typical of satellite imagery. Overall, this performance 
assessment is useful to determine if the training dataset is sufficiently 
large to represent the solution space by estimating the generalization 
performance on the wide range of optical water quality conditions 
covered within the dataset. However, this performance assessment does 
not apply to model performance on out-of-training set hyperspectral 
satellite imagery. 

4.2.2. Iterative leave-one-out cross-validation assessment 
To better characterize the performance of the final model on out-of- 

training set regions, we retrain the model by leaving out data from one 
region (one or more datasets). We can then better compare the perfor
mance accuracy of the MDN against un-optimized operational algo
rithms, and determine the estimated uncertainty for a range of optically 
distinct water bodies. By leaving out entire datasets, this performance 
assessment accounts for the impact of uncertainties due to differences in 
sampling methods and instrumentation used by any individual lab on 

the product estimation accuracy. Some complicating factors to this 
method are that not all datasets are from single regions and some 
datasets have a disproportionately high number of overall samples for 
specific BPs or IOPs. We evaluated most datasets by region (not all 
samples include latitude and longitude), but some datasets span multiple 
regions (e.g., the “Global Waters” dataset extracted via SeaBASS in 
Table 1). This offered the additional benefit of testing our algorithm 
with data collected by different scientists, as datasets are entirely con
tained. Overall, the leave-one-out cross-validation assessment is a more 
accurate assessment for the model’s generalization performance on 
previously unseen in situ data from global inland and coastal waters 
analyzed at different labs, but it does not account for atmospheric 
correction uncertainties common to hyperspectral satellite imagery 
which will impact the satellite derived products (Ibrahim et al., 2018). 

4.2.3. Product comparison from co-located in situ Rrs and hyperspectral 
satellite Rrs 

One way to estimate the impact of atmospheric correction un
certainties (Ibrahim et al., 2018) on the estimated BPs and IOPs is to 
compare products derived from in situ Rrs (Xe) to products derived from 
co-located satellite-derived Rrs (Xr). We have a dataset of 65 in situ Rrs 
from Pensacola Bay, Florida, U.S.A., with co-located and near- 
coincident (+/− 3 h) hyperspectral Rrs from HICO (Keith et al., 2014), 
used to assess product performance in previous publications (O’Shea 
et al., 2021). The nearest pixel was selected and the Rrs has been 
atmospherically corrected using SeaDAS. Such performance assessment 
also helps to determine the sensitivity of MDNs to uncertainties in Rrs, 
which are unavoidable due to atmospheric correction and instrument 
artifacts. In summary, while this method assesses the relative bias and 
uncertainty from products derived via in situ vs. satellite Rrs in a single 
region, it does not offer absolute metrics of uncertainty, as it is not a 
direct comparison to in situ measured BPs and IOPs, and does not 
generalize to additional regions or atmospheric correction approaches 
where uncertainties may differ. 

4.2.4. Matchup analysis: In situ biogeochemical parameter and IOP 
comparison to satellite products 

The best estimate of MDN product uncertainty is a direct comparison 
of satellite-derived products to in situ measurements. HICO imagery co- 
located with in situ measurements of chla, PC, aph, anap, and acdom are 
available from the previously described Pensacola Bay dataset (Keith 
et al., 2014). Additionally, PRISMA imagery co-located with in situ chla, 
PC, TSS, CDOM, and acdom are available from the Curonian Lagoon. 
Finally, chla and PC measurements are available via co-located 
matchups with HICO imagery of Lake Erie (Casey et al., 2019; 
Schaeffer et al., 2015). Although direct matchup analysis is ideal, 
practical limitations of available samples limit assessments over a wide 
range of optically distinct water bodies. 

4.3. Uncertainty metrics 

Common uncertainty metrics such as mean absolute percentage 
difference (MAPD) have issues such as: being undefined at a true value 
of 0, asymmetry with respect to overestimation and underestimation of 

Table 4 
Hyperparameters, range of covered values in hyperparameter search, and hyperparameters of the model with the lowest single round median MdSA. Training un
certainty as a function of parameters is covered in Fig. B1.  

Hyperparameter Pahlevan et al., 2022 Standard Values Range (steps) Best 

Iterations 10,000 103–105 (5) 31,622 
Nodes 100 102–2*103 (5) 446 
Layers 5 5–12 (5) 5 
Learning Rate 0.001 0.001 0.001 
Regularization (l2) 0.001 0.001 0.001 
Epsilon 0.001 10-3–10-2 (3) 0.001 
Rounds 10 1 1  
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Fig. 5. Measured and estimated aph(λ) from the test half of the 50/50 split at key spectral wavelengths for pigment analysis. A similar figure for aph retrievals from an 
MDN dedicated to aph retrieval can be found in (Pahlevan et al., 2021) for comparison. Additional BPs & IOPs can be found in the appendix, in Figs. C1–6. Contour 
lines demarcate equal proportions of the probability mass, to enhance the visualization of the data distributions. 
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target values, positive skew, and a lack of robustness to outliers (Morley 
et al., 2018). Instead of these common metrics, we leverage median 
symmetric accuracy (ε) and signed symmetric bias (β) for uncertainty 
quantification (Eqns. 6–8 Morley et al., 2018). ε and β are ideal uncer
tainty metrics because they are meaningful over multiple orders of 
magnitude (i.e., they use relative uncertainty, Eq. 6), symmetric 
(underprediction and overprediction are penalized equally), robust to 
outliers (median, Eqns. 7 & 8), and easily interpretable. For complete
ness, and to better understand noise performance, the slope of the linear 
least-squares regression (in log space), the Root Mean Squared Log 
Difference (RMSLD, Eq. 9), and coefficient of determination (R2) are also 
reported. 

Qi = yi/xi (6)  

ε = 100*
(
emedian(|loge(Qi) | ) − 1

)
(7)  

β = 100*sgn(median(loge(Qi) ) )*
(
e|median(loge(Qi) ) − 1

)
(8)  

where Qi is the accuracy ratio, with yi and xi representing the predictions 
and in situ observations, respectively. 

RMSLD =
1
n
∑n

i=1
(log(yi + 1) − log(xi + 1) )2 (9)  

5. Results 

5.1. Performance evaluation: 50/50 training/testing split and leave-one- 
out cross-validation 

The MDN architecture achieves the lowest ε and β relative to all (non- 

optimized) operational algorithms, for all parameters on the test half of 
the 50/50 training/testing in situ dataset split (Fig. 5 for aph, see 
Figs. C1–6 for BPs, acdom, and anap). In particular, MDN estimates of aph 
at four key wavelengths for aph retrieval are more accurate across the full 
4–5 orders of magnitude covered by the in situ measurements (Fig. 5). 
Also, the MDN has higher linearity and a lower number of outliers in the 
highest phytoplankton absorbing waters, characteristic of blooms, 
relative to the two (unoptimized) operational algorithms, QAA and 
GIOP. In addition to having fewer outliers than these algorithms, the 
MDN also produced no invalid estimates. 

The spectral ε for the IOPs calculated from the test half of the in situ 
dataset (Fig. 6) are generally proportional to the in situ absorption 
magnitude (Fig. 3). For aph, ε generally stays within the ~20–30% 
bounds. The highest ε in aph retrievals occurs in the 550–600 nm range, 
where aph is typically lowest (Fig. 3), and the lowest ε in aph retrievals 
occurs in the 400–480 nm and 650–700 nm ranges, where aph is 
generally highest. Spectral ε of acdom and anap range from ~15–40%, are 
lowest in the blue and highest in the red (Fig. 6), and follow an inverse 
relationship with the spectral magnitude of acdom and anap (Fig. 3) due to 
the relative nature of the metric. Spectral β in the calculated products 
does not seem to have a consistent pattern but only minimally varies 
from ~1 to − 3% for aph, acdom, and anap (Fig. 6). Overall, in situ retrievals 
from areas represented in the test half of the in situ dataset should have 
minimal spectral bias and differences in their uncertainty, but these 
results do not consider uncertainties from atmospheric correction or 
instrument noise within hyperspectral satellite imagery. 

The simultaneous estimation MDN performs better than, or equiva
lent to, unoptimized operational retrieval algorithms for estimating all 
products (except for PC) from independent datasets (blue dashed lines, 
Fig. 7) from the leave-one-out cross-validation analysis. MDN retrieval 

Fig. 6. ε(λ), β(λ), RMSLD, and slope for aph(λ), anap(λ), and acdom(λ) from the test half of the in situ dataset. A graphic demonstrating similar uncertainties can be 
found for aph retrievals from a dedicated model in (Pahlevan et al., 2021). 
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of PC seemingly offers the least benefit, however, the Schalles algorithm 
(Schalles and Yacobi, 2000) estimates are invalid for a substantial pro
portion (202/471 estimates from the test half of the 50/50 benchmark 
split, Fig. C4) of the dataset (notably in the lower concentration range). 
The datasets for which the MDN performs poorest either have a large 
composition of the overall dataset (NA: Great Lakes, EU: Spanish Lakes 
& Reservoirs) or the highest PC concentrations (NA: Nebraska). Another 
product having one of the lowest benefits from using the simultaneous 
MDN is chla, where the Gilerson algorithm (Gilerson et al., 2010) per
forms only slightly worse than the simultaneous MDN (blue dashed line, 
leftmost column, Fig. 7). For the other products, TSS, CDOM, aph, anap, 
and acdom, the MDN provides lower uncertainty in its results than the 
presented alternative algorithms, though, as expected, specific datasets 

with unique optical properties still prove difficult for the MDN, for some 
products (e.g., ‘NA: Minnesotan Lakes’ chla and ‘AS: Vietnamese Lakes’ 
TSS). 

5.2. Impacts of uncertainties in satellite Rrs on MDN retrievals 

Comparison of the products calculated from in situ Rrs and those from 
co-located SeaDAS processed HICO imagery demonstrates the substan
tial impact of uncertainties in satellite Rrs on the retrieval of BPs and 
IOPs (Fig. 8). The remotely estimated BPs and IOPs exhibit ε (relative to 
values estimated from in situ Rrs) ranging from 37.4 to 62.8%, due to 
uncertainties in the satellite-derived Rrs. All products generally have a 
high slope (0.660–0.949) and the IOPs have high R2 (0.603–0.905), 

Fig. 7. Leave-one-out cross-validation results for the MDN using the hyperparameters resulting in the lowest median MdSA in the hyperparameter sweep (Table 4), 
but for 10 full rounds of training. Similar datasets and regions were combined to represent individual locations (e.g., Erie, Taihu), though some conglomerate datasets 
(e.g., SeaBASS) may contain samples from multiple regions. Dashed lines represent the median regional uncertainty (calculated across regions). Spectral IOPs are 
reported on the median over all retrieved wavelengths. Acronyms: AF - Africa, AS - Asia, EU - Europe, NA - North America, OC - Oceania, and SA - South America. 
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however the BPs have much lower R2 (0.213–0.296). aph exhibits min
imal sensitivity, except for some larger outliers (Fig. 8). Uncertainties in 
Rrs only minimally impact acdom and anap, which have a low uncertainty 
(37.4%, 62.1%), high slope (0.949, 0.846), and high R2 (0.905, 0.761). 
The trends for all three IOPs hold across magnitude and wavelength 
(Fig. 8). Unfortunately, these results are limited to matchups from a few 
days in a single region/optical scenario, represent Rrs over very different 
spatial scales, and only report a relative uncertainty, but do not 
demonstrate absolute model accuracy through comparison to the actual 
in situ measurements and do not necessarily represent the impact of 
uncertainties from other atmospheric correction techniques (e.g., 
ACOLITE). 

Direct comparison between the in situ measurements and in situ- and 
remotely-derived products demonstrates an increased uncertainty in the 
remotely-derived products due to propagation of uncertainties from the 
atmospheric correction process to the product retrievals (Figs. 9 & 10). 
The Rrs are dominantly impacted by offsets and physically implausible 
results in the blue section of the spectrum (Ibrahim et al., 2018; Keith 
et al., 2014). In general, aph, is very well estimated by the in situ Rrs, 
capturing both the larger spectral shape and features at 425, 620, and 
673 nm, though there is a notable offset in the magnitude within the 
400–500 nm range in most retrievals. A very large offset in the magni
tude of the Rrs combined with a physically unrealistic shape (a much 
higher Rrs(410) than Rrs(440)) leads to a massive underestimation of aph, 
anap, and acdom (Fig. 10, PB08). Otherwise, uncertainties in Rrs lead to 
either overestimation of aph across the spectrum (Fig. 9, PB05 and 
PB04), underestimation of aph in the blue (Fig. 9, PB09), or a generally 
poor retrieval of the overall spectral shape of aph (Fig. 9, SA11). The 

spectral shapes of anap and acdom are much less sensitive to uncertainties 
in Rrs, generally staying within ~30% of the in situ measured absorption 
(or in situ-derived absorption, from Rrs input to the MDN, in the absence 
of an in situ measured absorption). The magnitude for both acdom and 
anap is much more heavily affected by the uncertainties, with three 
stations yielding derived magnitudes with uncertainties above 50% 
relative to the in situ measured absorption (Fig. 9, PB05 & PB09 and 
Fig. 10 PB08). Using the MDN-derived CDOM absorption in place of 
acdom(440) performs as well or slightly worse in all cases (Figs. 9 & 10), 
despite the higher number of available samples (Figs. 2 & 3). In sum
mary, the spectral shape of aph is the most sensitive to uncertainties in 
Rrs, while the spectral slopes of acdom and anap are relatively insensitive. 

5.3. Product map assessment: HICO imagery of Lake Erie 

MDN-derived BP product maps of Lake Erie from HICO imagery are 
spatially consistent and agree with our historical understanding of the 
region despite uncertainties in Rrs associated (mainly) with atmospheric 
correction (Figs. 11-13, D1–6). The Detroit River plume (DRP, north
western section of Lake Erie), fed by the Detroit River from Lake St. 
Claire, historically has low chla and PC concentrations (Binding et al., 
2019; Moore et al., 2017). The MDN-derived product maps (Fig. 11) 
align very well with the literature measured in situ values (Table 5) for 
the DRP, though PC may be slightly overestimated (which is expected as 
much of the Lake Erie data, which contains a large percentage of our PC 
samples, particularly those with low concentrations, was left out of 
training). The product maps (Fig. 11) also agree quite well with litera
ture measured values from prior years (Table 5) for Maumee Bay (MB) 

Fig. 8. BPs and absorbing IOPs calculated from 65 co-located remotely sensed (SeaDAS corrected HICO imagery, Xr [e.g., aphr]) and in situ (Xe [e.g., aphe]) Rrs 
(Section 3.2). IOP scatterplots include all retrieved wavelengths (data color coded by respective wavelength). Wavelengths for absorbing IOPs spanned 409–690 nm 
for aph and 409, 438, 490, 530, 558, 627, 650, & 673 nm for acdom and anap (as described in Section 4.1.1). Contour lines demarcate equal proportions of the 
probability mass, to enhance the visualization of the data distributions. 
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and Central Basin (CB). 
While the products within Maumee Bay do not align perfectly with 

the historical measurements of the region, they do match the spatial 
distribution of the in situ observations quite well (black circles, Fig. 11). 
In addition to generally agreeing with historical measurements of the 
region and the in situ values in Maumee Bay, the product maps for chla 
and PC also agree well with maps from dedicated MDNs (O’Shea et al., 
2021, Fig. 8; Pahlevan et al., 2021, Fig. 9). Overall, the BP product maps 
align quite well with our co-located in situ measurements and historical 
understanding of the spatial distribution of these constituents, though, 

as may be expected, temporal and spatial fluctuations in bloom 
magnitude combined with uncertainties related to remote estimation 
lead to imperfect agreement. 

IOP product maps produced from the hyperspectral inversion 
framework also agree with the historical understanding of the region 
(Figs. 11. & D1–3). Specifically, all three IOPs, aph, anap, and, acdom, are 
lowest in the DRP and CB of Lake Erie, and highest in SB and MB. The 
relative values align quite well with both the literature’s reported spatial 
distributions in this region and with the historical absolute values 
(Moore et al., 2017). Of note, the lower concentrations of chla and PC in 

Fig. 9. In situ (cyan) and co-located HICO Rrs (red) spectra from select stations within Pensacola Bay (top row, matching row 2 from Fig. 7 of Pahlevan et al., 2021). 
The MDN-derived estimates of aph, anap, and acdom from the in situ (cyan) and co-located HICO Rrs (red) are compared against the in situ measured (black) absorptions. 
Text on the anap and acdom plots compares between the point and slope (derived from Eq. 3), as well as the MDN-estimated CDOM value (acdom(440), but with more 
samples available for training than the multispectral curves). The calculated point and slope are used to generate the in situ and remote curves for anap and acdom with 
eq. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the DRP and CB are not only visible via the chla and PC product maps, 
but also by aph at all bands, and most notably by negligible aph(620), the 
absorption peak of phycocyanin, a pigment specific to cyanobacterial 
biomass. Meanwhile, absorption peaks of chla and accessory pigments 
are visible in the spectral estimates for aph in the SB and MB (Fig. 12, row 
2). The MDN-derived specific absorption coefficient of phytoplankton 
(Fig. 12, row 3) is similar to the shape (except with a lower peak at 
~680 nm) and magnitude of the specific absorption coefficient of 
phytoplankton from Maumee Bay reported in the literature (Fig. 5c from 
Binding et al., 2019), though the MDN-derived specific absorption co
efficient of phytoplankton (MDN-derived aph/chla) is significantly lower 
for Sandusky Bay. Overall, the spatial distribution of the MDN-derived 
IOPs is underpinned by the literature. 

5.4. Map product assessment: PRISMA imagery of the Curonian Lagoon 

PRISMA-derived BPs and IOPs (Figs. 13 & D4–6) agree with in situ 
values (where available) and the literature’s understanding of the hy
drodynamic regime of the region. Product maps of chla and CDOM 
match the magnitude of in situ values, but PC is significantly under
estimated and TSS is slightly overestimated. The MDN-derived chla, 
TSS, and PC maps, with lower values in the Baltic Sea (BS), Klaipeda 
Strait (KS), and Atmata-Nemunas River plume (ANRP) and higher values 
in the main body of the Curonian Lagoon (CL), largely agree with the 
typical climatology derived from remote sensing for summer months 
(Kowalczuk et al., 2010; Kyryliuk and Kratzer, 2019; Vaičiūtė et al., 
2021; Woźniak et al., 2016). Maps of acdom at five wavelengths 

Fig. 10. Same as Fig. 9, but matching stations in row 3 from Fig. 7 of Pahlevan et al., 2021.  
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Fig. 11. MDN-derived product maps of chla, 
PC, TSS, CDOM as well as acdom, anap, and aph 
at 490 nm from ACOLITE corrected HICO 
imagery of Lake Erie acquired on September 
8th, 2014. Co-located in situ measurements 
are shown as black circles, with the inside fill 
color matching the in situ measurement. The 
black stippling in the Central Basin near 
Sandusky Bay is due to invalid Rrs retrievals 
in the blue bands. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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demonstrate strong agreement with the magnitude of the associated in 
situ values, though there is over- and underestimation at the shorter and 
longer wavelengths, respectively (Fig. D4). Additionally, while the in 
situ acdom slightly increases across the spectrum in the ANRP, the MDN- 
derived acdom slightly decreases in this region. Although there are no in 
situ values for aph, the MDN-derived maps (Figs. 13 & D5) capture lower 
estimates in the BS and the KS connection to the CL, which are expected 
due to generally lower values in the BS. The substantially lower in situ PC 
concentration in the ANRP would suggest lower relative aph(620) (due 
to phycocyanin’s peak absorption at this wavelength), which is not the 
case (Figs. 13 & D5). While the chla concentrations are slightly higher in 
the ANRP, the associated absorption at 673 nm does not increase 
(Figs. 13 & D5). Finally, absorption by NAP follows a similar trend, 
being lowest in the BS, KS, and ANRP and highest in the main body of the 
CL (Figs. 13 & D4), which generally agrees with the trends of the 
measured in situ TSS magnitude (Fig. 13). 

6. Discussion 

6.1. Simultaneous vs. dedicated models 

Theoretically, simultaneously estimating additional parameters 
should enhance the overall performance of the MDN for each individual 

parameter, as the MDN learns the covariance between the estimated 
products. Indeed, we saw that the uncertainties of the BPs and IOPs 
matched well with the ones reported in previous multi- and hyper
spectral applications while using imputation to fill in for missing values 
(Rubin, 2004; Sovilj et al., 2016), even when the missing values sub
stantially outnumbered the in situ measurements. Not only did the 
simultaneous models generally beat the performance for the dedicated 
(and 3 parameter) multispectral models (Balasubramanian et al., 2020; 
Pahlevan et al., 2022; Smith et al., 2021) for the in situ estimates, but 
they also tied the hyperspectral models (Pahlevan et al., 2021), notably, 
on a significantly larger in situ dataset that spanned a wider distribution 
of optically unique scenarios. While the uncertainty may still be insuf
ficient for aquatic biodiversity assessments (Dekker et al., 2018; Muller- 
Karger et al., 2018), our proposed inversion scheme significantly ad
vances generalization accuracy in inland and coastal waters relative to 
operationally available algorithms. Our generalization performance 
improved substantially, both relative to widely used heritage algorithms 
(Fig. 7) and dedicated MDNs (Pahlevan et al., 2021, 2022). Interestingly, 
the simultaneous MDN (utilizing imputation) generalized better than 
the dedicated MDN. On improperly labeled training data, the dedicated 
MDN overfit training data that provided attenuation instead of absorp
tion measurements, while the simultaneous MDN correctly under
estimated them (not shown). 

The major cost for the increased complexity of simultaneously 
derived spectral products comes during training, as the covariance must 
be learned between the different output variables. Since our model only 
estimates spectral acdom and anap at eight selected bands in the visible 
section of the spectrum, we lose information on potential real variability 
at non-represented wavelengths. The ideal model architecture to 
represent the additional hyperspectral bands, as we move forward with 
PACE’s OCI sensor with higher spectral resolution and range, must be 
identified via a similar hyperparameter sweep as performed above 
(Table 4). Training with these additional parameters may require 
increased computational performance via distributed training of the 10 
rounds on a high-performance computing system. While the training 
complexity increases substantially, runtimes on a standard computer are 
unlikely to increase dramatically (~30 min per HICO image). 

6.2. Major drivers of uncertainty 

Our current dataset has many limitations for application to globally 
distributed inland and coastal waters. One major limitation is the un
even global representation of inland and coastal waters. While there are 
substantial measurements from optically unique water bodies in North 
America and Europe, there are very limited contributions (~20%) from 
inland and coastal waters of South America, Asia, and Africa (Pahlevan 
et al., 2022). Although one may expect high epistemic uncertainty in 
these regions, due to limited training samples requiring the MDN to 
extrapolate to some degree, the MDN performed quite well on out-of- 
training samples across the globe (Fig. 7), with a performance compa
rable to that of operational algorithms on the undersampled regions 
(South America, Asia, Oceania, and Africa). These results, where the 
MDN matches operational algorithm accuracy in out-of-training set re
gions, aligns with previous leave-one-out assessments applied to 
simultaneous MDNs, even when compared against additional opera
tional algorithms (Pahlevan et al., 2022). Not only are these models 
comparable to operational algorithms on regions with limited data, but 
their epistemic and aleatoric uncertainty can also be estimated in these 
regions (Saranathan et al., 2023), to better determine the validity of the 
estimates. 

Other, more minor, limitations in our dataset exist. First, measure
ments of phycocyanin are left-skewed (Fig. 2), likely due to practical 
limitations of water quality managers only having sufficient funding to 
sample PC in water bodies susceptible to cyanobacterial blooms. 
Another limitation that may prevent comparison between PC samples 
representing different regions is the lack of standardized analytical 

Fig. 12. Selected HICO Rrs from the Detroit River plume (DRP, blue circle), 
Maumee Bay (MB, orange upside-down triangle), Sandusky Bay (SB, green 
triangle), and Central Basin (CB, red square). MDN-derived aph and specific 
absorption (a*ph = aph/chla) are shown in the bottom two rows. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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methods (Zimba, 2012). Finally, due to the reduced revisit time of 
current and past proof-of-concept hyperspectral sensors, there are a 
limited number of in situ matchups available, and only from a specific 
few well-studied regions. With the upcoming PACE mission, additional 
efforts will have to be made to retrieve in situ measurements from inland 
and coastal waters that are co-aligned with satellite overpasses. 

Besides the uncertainty associated with an imperfect in situ dataset, 
the majority of the remaining uncertainty is associated with the un
certainties in the satellite imagery, including uncertainties in the at
mospheric correction process, imperfect radiometric calibration, and 
low signal-to-noise ratios in the hyperspectral imagery (Ibrahim et al., 
2018; O’Shea et al., 2021; Pahlevan et al., 2020). We found differences 
in the range of 37.4–62.8% between products estimated from in situ Rrs 
and co-located satellite Rrs (Fig. 8), which generally exceed or match the 
uncertainties associated with the 50/50 training/testing split and leave- 
one-out cross-validation for most products (Figs. 6 & 7). Uncertainty 
related to the atmospheric correction process not only resulted in 
random errors, but incorrect spectral shapes in features for some prod
ucts, such as aph (Figs. 9 & 10, stations SA11 & CH03), which can be 
even more deleterious for phytoplankton community composition 
retrieval. Fortunately, certain products, such as acdom and anap, were 
minimally affected by uncertainties in Rrs (Figs. 8, 9, & 10). Overall, the 
largest increase in phytoplankton composition analysis capabilities from 
hyperspectral satellite sensors will likely come from reduced uncertainty 
in the atmospheric correction process and increasing representation 
within in situ training datasets, and not direct improvements to inversion 
frameworks. 

6.3. Implications for science and applications 

Using our product suite, water resources managers studying and/or 

monitoring HABs (e.g., cyanobacterial blooms) will have the ability to 
augment their existing sampling regimes to incorporate undersampled 
phytoplankton pigments, such as phycocyanin, and use their spatio
temporal distribution to target sites of interest for additional in situ 
monitoring, while managing their monitoring resources more conser
vatively (Stroming et al., 2020). Since the model is developed with 
global data, and shown to perform well in leave-one-out regional data
sets (Fig. 7), the model does not need to be retuned for reasonable re
trievals from new regions. While our product suite is currently available 
online via a codebase (https://github.com/STREAM-RS/STREAM-RS), 
we are also developing a web-based toolkit for displaying interpretation 
ready products. Our high-fidelity hyperspectral products will allow for 
the quantification and optical characterization of phytoplankton blooms 
and studying of phytoplankton diversity. Further, retrieving anap may 
permit the determination of relative proportions of inorganic and 
organic matter (Babin, 2003). In bloom conditions, aph products will 
also trigger developments of innovative algorithms for the retrievals of 
phytoplankton properties, such as size classes, pigment composition and 
concentration, and species abundance in highly eutrophic and/or 
sediment-rich waters (Chase et al., 2013; Ciotti et al., 2002). Moreover, 
using our IOP products, the scientific community may explore physics- 
based closure analyses (Mobley et al., 2002) to arrive at lesser-known 
variables, such as the phytoplankton Volume Scattering Function 
(VSF) and Bidirectional Reflectance Distribution Function (BRDF) 
(Twardowski et al., 2012; Twardowski and Tonizzo, 2018). 

6.4. Future directions 

The MDN’s accuracy and applicability can be improved through the 
addition of input and output features. Additional metadata, such as 
water temperature, salinity, and latitude/longitude, can all be added as 

Fig. 13. MDN-derived product maps of chla, PC, TSS, and CDOM as well as acdom, anap, and aph at 490 nm from PRISMA imagery of the Curonian Lagoon acquired on 
September 20th, 2020. Co-located in situ measurements are shown as black circles, with the inside fill color matching the in situ measurement. 

Table 5 
Literature measured (Moore et al., 2017) values in Lake Erie from the summers of 2013 and 2014, retabulated (from Table 1 in Moore et al., 2017) for visual com
parison to MDN-derived product maps (Fig. 11). Range of literature measured values is shown in parenthesis, after the mean.  

Product Detroit River Plume Central Basin Maumee Bay 

Chla (mg/m3) 5.4 (1.3–16.5) 17.2 (6.0–22.5) 54.7 (4.6–100) 
TSS (g/m3) 3.2 (2.4–3.8) 4.2 (2.7–5.5) 18.6 (1.8–57.8) 
CDOM (m− 1) 0.09 (0.06–0.11) 0.24 (0.13–0.39) 0.38 (0.08–1.18) 
PC (mg/m3) 0.2 (0–0.4) 3.5 (1.0–5.3) 40.5 (0.7–210)  
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input features to the MDN, to better constrain the possible spectral aph 
(via constraining the phytoplankton community composition) (Bouman 
et al., 2003; Brewin et al., 2019; López-Urrutia and Morán, 2015; 
Montes-Hugo and Xie, 2015; Olli et al., 2019; Robinson et al., 2021). 
Additionally, while the MDN may produce inaccurate estimates for any 
individual spectra, the outputs may serve as the initial parameterization 
of an optimization technique (e.g., GIOP), to improve final estimates. In 
addition to potentially increasing accuracy, this would also allow for 
calculating additional IOPs, such as the particulate backscattering co
efficient (bbp) by leveraging pre-existing optimization techniques (e.g., 
GIOP) (Werdell et al., 2013). Additionally, regional datasets could be 
used in transfer learning-based approaches to increase accuracy for 
parameter retrieval in optically unique regions. Finally, per-pixel un
certainty maps could be leveraged to identify areas with high confidence 
estimates for stakeholder use and biogeochemical modeling (Saranathan 
et al., 2023). Overall, machine learning models may be able to fully 
leverage available information and to better estimate phytoplankton 
pigments, which, when combined with optimization techniques, may 
achieve the highest accuracy estimates. 

7. Conclusions 

This study presents the first MDN-based hyperspectral inversion 
framework for simultaneous estimation of chla, PC, TSS, CDOM, aph, 
acdom, and anap from inland and coastal water bodies. The model ach
ieves similar or better accuracy (15–40% for all products, but PC, and <
60% for PC) on a larger, more diverse, in situ dataset than previous, 
dedicated MDNs. When retrained using a leave-one-out cross-validation 
approach, the MDN had better generalization performance than opera
tional algorithms for all BPs and IOPs (except for PC). Absolute model 
accuracy is sensitive to uncertainties typical of hyperspectral satellite 
imagery for all BPs and IOPs, with acdom and anap exhibiting reduced 
sensitivity relative to aph. Despite this sensitivity, product maps from 
two optically distinct regions, Lake Erie and the Curonian Lagoon, 
generally agree with both co-located in situ samples and the literature’s 
understanding of these regions. The model was rapidly retrained and 
deployed for PRISMA, an additional, currently operational, hyper
spectral imager, demonstrating the model’s expeditious redeployment 
capabilities in preparation for the upcoming Plankton, Aerosol, Cloud, 
ocean Ecosystem (PACE) mission. The ability to rapidly retrain and 
deploy the model addresses stakeholders concerns about data continuity 
over multiple mission lifetimes (Schaeffer et al., 2013). Substantial un
certainty from the atmospheric correction process suggests that the 
largest accuracy improvement for recovering IOPs would come from 
increased accuracy in retrieval of the remote sensing reflectance, 
stemming from improvements in atmospheric correction techniques. 
Further improvements to the simultaneous MDN would include envi
ronmental and physical variables as input features, to enable phyto
plankton type/species discrimination in a constrained region. 
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Appendix A. Atmospheric correction settings 

The HICO imagery of Lake Erie in Figs. 11 and D1-D3 were processed with ACOLITE, using user defined settings as listed in Table A1.  

Table A1 
User defined ACOLITE settings for processing HICO imagery.  

ACOLITE Setting User Defined Value 

l2w_mask False 
l2w_mask_water_parameters False 
l2w_mask_negative_rhow False 
l2w_mask_cirrus False 

(continued on next page) 
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Table A1 (continued ) 

ACOLITE Setting User Defined Value 

l2w_mask_high_toa False 
polylakes False 
l2w_mask_wave 794 
l2w_mask_threshold 0.08 
l2w_mask_cirrus_wave 1011 
l2w_mask_cirrus_threshold 0.12 
l2w_mask_high_toa_threshold 10.0 
l2w_mask_smooth False 
l2w_mask_negative_wave_range 410,725 
limit 41.3330468,-83.71757,42.31545,-80.677101  

Appendix B. Hyperparameter optimization 

The MDN hyperparameter search (covering the hyperparameters shown in Table 4) yielded hyperparameters suitable for ocean color remote 
sensing. The models with similar hyperparameters as the standard parameters used for estimating individual products (5 layers, 100 neurons, 10,000 
training iterations, and an epsilon of 0.001) yielded higher uncertainty (Fig. B1, leftmost plot) than alternative hyperparameter combinations, 
demonstrating the insufficient complexity of this combination for the simultaneous estimation of such a large number of products. Changes in the 
epsilon value result in dramatically different uncertainty ranges for the respective hyperparameter combinations.

Fig. B1. MDN hyperparameter optimization for the hyperspectral simultaneous retrieval of BPs and IOPs. Hidden neurons, training iterations, layers, and epsilon 
values were varied. The lowest median MdSA for each epsilon value is shown with a magenta X. The overall lowest median MdSA (taken over all products, with 
spectral products represented by the median over all bands) is (30.45%) and occurs at the hyperparameters covered in Table 4. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Appendix C. Performance assessment - 50/50 training/testing split 

Additional BP products and IOPs from the test half of the 50/50 split benchmark assessment demonstrate the MDNs improvement against 
(unoptimized) operational algorithms (C1–6).

Fig. C1. Estimated vs. measured chla from the test half of the 50/50 split, compared against operational algorithms (Gilerson et al., 2010; Smith et al., 2018).   
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Fig. C2. Estimated vs. measured TSS from the test half of the 50/50 split, compared against operational algorithms (Nechad et al., 2010; Novoa et al., 2017). These 
operational algorithms were chosen as they perform well on globally distributed waters and have been previously used for comparison to TSS retrieval from MDNs 
(Balasubramanian et al., 2020; Pahlevan et al., 2022). 

Fig. C3. Estimated vs. measured CDOM from the test half of the 50/50 split, compared against operational algorithms (Ficek et al., 2011; Zhu and Yu, 2013).  

Fig. C4. Estimated vs. measured PC from the test half of the 50/50 split, compared against operational algorithms (Schalles and Yacobi, 2000; Simis et al., 2005).   
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Fig. C5. Estimated vs. measured acdom from the test half of the 50/50 split, compared against operational algorithms.   
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Fig. C6. Estimated vs. measured anap from the test half of the 50/50 split.  
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Appendix D. Additional HICO and PRISMA product maps

Fig. D1. MDN-derived product maps of acdom at 409, 438, 490, 558, & 650 nm (530, 626, & 673 nm not shown) from ACOLITE corrected HICO imagery of Lake Erie 
acquired on September 8th, 2014.  
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Fig. D2. MDN-derived product maps of anap at 409, 438, 490, 558, & 650 nm (530, 626, & 673 nm not shown) from ACOLITE corrected HICO imagery of Lake Erie 
acquired on September 8th, 2014.  
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Fig. D3. MDN-derived product maps of aph at 444, 490, 530, 621, & 673 nm from ACOLITE-corrected HICO imagery of Lake Erie acquired on September 8th, 2014. 
Black saltires (x) with white borders mark the sample locations used in Fig. 12, the labels’ border color corresponds to Rrs from that location in Fig. 12.  
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Fig. D4. MDN-derived product maps of acdom at at 411, 441, 485, 563, & 651 nm from PRISMA imagery of the Curonian Lagoon acquired on September 20th, 2020. 
Co-located in situ measurements are shown as black circles, with the inside fill color matching the in situ measurement. 

Fig. D5. MDN-derived product maps of aph at 441, 493, 530, 623, & 670 nm from PRISMA imagery of the Curonian Lagoon acquired on September 20th, 2020.   
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Fig. D6. MDN-derived product maps of anap at 411, 441, 485, 563, & 651 nm from PRISMA imagery of the Curonian Lagoon acquired on September 20th, 2020.  
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