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Abstract 

The problem of classifying a spatial multivariate Gaussian data into one of several categories specified by different regression 
mean models is considered. The classifier based on plug-in Bayes classification rule (PBCR) formed by replacing unknown 
parameters in Bayes classification rule (BCR) with category parameters estimators is investigated. This is the extension of the 
previous one from the two category case to the multiple category case. The novel close-form expressions for the Bayes 
misclassification probability and actual error rate associated with PBCR are derived. These error rates are suggested as 
performance measures for the classifications procedure. 
The three-category case with feature modelled by bivariate stationary Gaussian random field on regular lattice with exponential 
covariance function is used for the numerical analysis. Dependence of the derived error rates on category parameters is studied. 
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1. Introduction 

Misclassification probabilities and error rates in two-category discriminant analysis of spatial data have been 
recently investigated by several authors (see e.g. Šaltyt -Benth and Du inskas [1], Du inskas [2], Batsidis and 
Zografos [3]). Multi-category linear discriminant analysis of spatial data generated by univariate Gaussian random 

 

 
* Corresponding author. Tel.: +370-685-44253; 

E-mail address: l.dreiziene@gmail.com 

© 2015 The Authors. Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Spatial Statistics 2015: Emerging Patterns committee

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proenv.2015.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proenv.2015.05.003&domain=pdf


79 Lina Dreižienė and Kęstutis Dučinskas  /  Procedia Environmental Sciences   26  ( 2015 )  78 – 81 

field (GRF) is considered in Du inskas et al. [4]. Correct classification rates for linear discriminant analysis of 
multivariate GRF observations for relatively large category number (comparing with dimensionality of GRF) is 
derived in Dreižien  et al. [5]. In the present paper the above investigation is extended to the error rates for two 
cases of dimensional structure. We propose the method of multi-category discriminant analysis essentially 
exploiting the BCR. Parametric PBCR formed by replacing unknown parameters with their estimators in BCR is 
being used. The novel close-form expressions for the overall probability of misclassification and overall actual error 
rate associated with PBCR are derived. These error rates are suggested as performance measures for the 
classification procedure.  

2. The main concepts and definitions 

Suppose that every observation of p-variate GRF 2:)( RDssZ  belongs to one of L disjunctive categories, 

say 1 ,…, L . The model of observation )(sZ  in category l , L=l 1,...,  is )()()( s+s=s lxBZ , where )(sx  is 

a 1q  vector of non random regressors and lB  is a pq  matrix of parameters.  

The error term is generated by p-variate zero-mean stationary GRF Dss :)(  with covariance function 

defined by model for all Dus,  is , )()()(cov usr=us , where usr  is the spatial correlation function and 

 is the variance–covariance matrix with elements }{ ij . 

Consider the problem of classification of the vector of observation of Z at location 0s  denoted by 00 s= ZZ  
into one of L populations specified above with given joint training sample T.  

Joint training sample is specified by np  matrix 
L,,= TTT 1

, where lT  is the pnl  matrix of ln  

observations of )(Z  from l , ,...,L=l 1 ,
L

l ln=n 1 . The Lqn  design matrix corresponding to T is specified by  

l

L

l
= XX

1
, where symbol  denotes the direct sum of matrices and lX  is the qnl  matrix of regressors for lT , 

L,=l 1,... . 

Then the model of T  is EXBT += , where L,...,= BBB 1  is the Lqp  matrix of means parameters and E is 
the pn  matrix of random errors that has matrix-variate normal distribution i.e. R0E ,~ pnN . Here R  
denotes the spatial correlation matrix among components (rows) of .T  

In the rest of the paper the realization (observed value) of training sample T will be denoted by t. 
Denote by 0r  the vector of spatial correlations between 0Z  and observations in T , and set 0

1
0 rR= , 

001 r= , ,L,l=,= ll 10
0 xB  and XBM = . 

Notice that in category l  the conditional distribution of 0Z  given tT =  is Gaussian, i.e. 

tltpl ,N| 0
0

0 ~;t=TZ , where conditional means 0
lt  are  

,L,l=,+=;|=E lllt 10

0

0

0 Mtt=TZ   (1) 

and conditional covariance matrix t0  is 

t=TZ =;|V= lt 00 .  (2) 

Under the assumption of completely parametric certainty of populations and for known prior probabilities of 
populations l , 11

L

l l  Bayes rule minimizing the probability of misclassification is based on the logarithm of 
the conditional densities ratio. 

Denote by B,  the set of unknown parameters and denote the log ratio of conditional densities in 
categories k  and l  by  
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klltkttltktkl +/+=W ZZ 1

00 2, ,  (3) 

where lkkl ln . 
These functions (3) will be called pairwise discriminant functions (PDF).  
Then Bayes rule (see Anderson [6]) is defined as: classify 0Z  to population k  if for ,...,Ll 1  0,0ZklW .  
Recall, that under the definition (see e.g. Du inskas [2]) a conditional probability of misclassification due to 

aforementioned BCR is  

L

k
kk PCP

1

1 ,  (4) 

where for ,...,Lk=1  

lkltk k,L,l,l,;WPPC 1000 Z   (5) 

is the class conditional probability of correct classification of 0Z  when it comes from k . 
Let ),|( VMp be the probability density function of the normally distributed random vector )(~ VM,U pN  and 

),|()( pp I0 . 

Define two dimensional structure cases: CASE A for p<L and CASE B otherwise. 
Set /)(2/1

lkkla . 
Lemma 1. The class conditional probability of correct classification due to BCR specified in (5) in the CASE A 

is specified by  

kB
pk duuPC , where k,...,L,l,l/||:RB klklkl

p

k 1022aauu  and in the CASE B  

1

1 ,
LR

kkLk dvvPC VM , where kM is the L-1 vector with elements 

kl,...,L,lkllklk 1,00100  

and kV is the 11 LL  matrix  with elements 

ml,...,L,l,mmklk 1,00100 . 

Proof. CASE A. Probability measure tP0  is based on conditional distribution of 0Z  given k,t=T  with means 

and variance-covariance matrix specified in (1), (2). In the above conditions, 0Z  may be expressed in form 

ktt UZ 2/1
0 , where ),(~ ppN I0U  and pI  denotes the p dimensional identity matrix. 

After making the change of variables 0Zu in (3)-(5), we complete the proof of CASE A. 

CASE B. Set ,,..., 0101201 ZZZW ,W,W, L  

Lk,W,W,W,W, kLkkkkkk ,...,2,,...,,,..., 00101010 ZZZZZW .  

Then kkLk N, MZW ,~ 10  and proof of Lemma 1 is straightforward. 

3. The error rates for plug-in BDF 

In practical applications not all statistical parameters of populations are known. Then the estimators of unknown 
parameters can be found from training sample. When estimators of unknown parameters are plugged into BDF, the 
plug-in BDF is obtained. In this paper we assume that true values of parameters B  and  are unknown. Let B̂  and 
ˆ  be the estimators of B  and  based on T . Set }ˆˆ{ˆ ,B . 
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Then replacing  by ˆ  in (3) we get the plug-in BDF 

klltkttltktklkl ++=,WW ZZ ˆˆˆ2/ˆˆˆˆ 1

00 ,  

where 00
ˆˆˆ BXtxB skkl . 

Then the classification rule based on PBCR is associated with plug-in PDF in the following way:  
classify 0Z  to population k  if for ,...,Ll=1  0ˆ,0ZklW . 

Definition 1. The overall actual error rate incurred by PBCR associated with PPDF is  
L

k
kkt CPP

1

ˆ1ˆ ,  

where, for ,...,L=k 1  kkltk k,L,l,l,;WPCP 10ˆˆ
00 Z  to be called class-conditional actual error rate. 

Set )ˆˆ(ˆˆ 12/1

lkkla , 0
ˆˆ skk xB , kllklkkkl /ˆˆˆ2/)ˆˆ(ˆˆ 1

0 BBXb . 

Lemma 2. The defined conditional actual error rate has the following form for CASE A: 

kA

pk duuCP ˆ ,  

where k,...,L,llbRA klkl

p

k 1,0ˆˆ: auu . And for CASE B the conditional actual error rate is  

1

1
ˆ,ˆˆ

LR

kkLk dvvCP VM ,  

where 0,1

1 vRvR L

L , kM̂ is the (L-1) vector with elements klLlbkl ,,...,1,ˆ  and kV  is 

the 11 LL  matrix with elements kmlLmlkmkl ,,,...,1,,ˆˆ aa . 

Proof. Lemma 2 could be proved analogically to the Lemma 1. 

4. Example and discussions 

To investigate the performance of the proposed plug-in Bayes rule a simulation study for the three-category case 
with feature modelled by bivariate stationary GRF on regular lattice with exponential covariance function given by 

/exp2 hhC  is carried out. Here 2 is variance and  is a parameter of spatial correlation. Dependence of 
the derived error rates on category parameters is studied. 

The results of numerical analysis give us strong arguments to expect that the proposed formulas of error rates 
could be effectively used for the performance evaluation of the plug-in Bayes rules applied to multi-category 
classification of spatial Gaussian process observation for different dimensional structure cases. 
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