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individual corn and soybeans fields 
simulated. 

• Crop yield calibration procedure incor
porated into the new SWAT+ model.  
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A B S T R A C T   

CONTEXT: Despite a steady increase in staple crop yields over the past ten years, current agricultural production 
must escalate even more to keep pace with the expected world population growth, which in turn will require 
improved agricultural methods that are adapted to many environmental pressures. Comprehensive models that 
can simulate crop production systems and the impact of management and conservation practices on natural 
resources and the environment, including water quality at large scale present important contributions to this 
challenge. 
OBJECTIVE: To this end we developed the National Agroecosystem Model (NAM): a comprehensive model that 
uses the updated Soil and Water Assessment Tool (SWAT+) to accurately simulate staple crop yields across the 
contiguous United States (CONUS), with an initial focus on Corn (Zea mays L.) and Soybean (Glycine max L. 
Merr.) yields. 
METHODS: Available open-access data was used to setup this high-resolution modeling system, where every 8- 
digit hydrologic unit (HUC8) is represented as an individual SWAT+ simulation. A total of 2201 HUC8 
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simulations across the CONUS were interconnected from upstream to downstream to make the NAM. Field 
boundary data was used to setup the NAM in such a way that every identified cultivated field is modeled as a 
unique Hydrologic Response Unit (HRU). Simulated corn and soybean yield from over 2.5 million field-type 
HRUs were compared to reported average annual corn and soybean yields for the respective area for the 
2015–2020 period. 
RESULTS AND CONCLUSIONS: Results show a good agreement between simulated and reported yields (R2 = 0.90 
for corn and R2 = 0.70 for soybeans), with a very good model performance in the high corn and soybean pro
duction region of the US Corn Belt (Relative Error < ±5%). 
SIGNIFICANCE: Apart from assessing the capability of the updated SWAT+ model, we also demonstrate the new 
crop yield calibration module embedded in SWAT+, highlight changes to the plant growth module, and model 
parameterization. Results of an analysis of possible crop production differences for corn and soybeans in irri
gated, tiled, and non-irrigated-non-tiled fields are also discussed. The versatility of the NAM provides the pos
sibility to analyze information on impacts of changing conservation practices and enables identification of 
conservation gains and remaining conservation needs at the national scale.   

1. Introduction 

In February 2020, the United States Department of Agriculture 
(USDA) announced the Agriculture Innovation Agenda, with a goal of 
increasing U.S. agricultural production by 40% while cutting the envi
ronmental footprint of U.S. agriculture in half by 2050 (USDA, 2021). 
National models that simulate the impact of land management and 
climate on crop production and environmental quality can assist in 
policy making to achieve this ambitious goal. National models have 
been developed by the USDA and university partners for conservation 
and environmental assessment. The Conservation Effects Assessment 
Project (CEAP) was developed to determine the impact of USDA con
servation practices on agriculture and the environment (Mausbach and 
Dedrick, 2004; Duriancik et al., 2008). The Hydrologic and Water 
Quality System (HAWQS) was developed for the U.S. Environmental 
Protection Agency (USEPA) for national and local environmental policy 
development (Yen et al., 2016). The Long Term Agroecosystem Research 
(LTAR) project, led by the USDA Agricultural Research Service (ARS), 
also applies national modeling and monitoring efforts to determine 
“aspirational” practices to achieve USDA policy goals (USDA, 2019a, 
2019b; White et al., 2022). 

Crop yield estimates have broad impacts on economic sectors, such 
as food production monitoring, global trade, food security, and envi
ronmental externalities including hydrologic processes, pollutant 
transport and production sustainability. According to the Agriculture 

Census (USDA/NASS, 2021), there has been a steady increase in corn 
and soybean yields in the U.S. over the past ten years (Fig. 1). Never
theless, to keep pace with the expected world population growth, cur
rent agricultural production must increase by about 70% by 2050 (FAO, 
2018). Addressing this food production challenge will require improved 
agricultural methods that are adapted to many environmental pressures. 
Comprehensive ecohydrological models that can simulate crop pro
duction systems and the impact of management and conservation 
practices on natural resources and the environment, including water 
quality at large scale can make a very important contribution to this 
challenge (Chen et al., 2021). 

The U.S. Corn Belt is an example of a region that could benefit from 
the application of ecohydrological modeling tools, due to the pervasive 
export of nutrients and other pollutants from cropland landscapes and 
other source areas (Jones and Schilling, 2011; Jones et al., 2018a, 
2018b; Sprague et al., 2011; USEPA, 2008). The application of such 
models can provide vital insights regarding the need for alternative 
cropping systems and best management practices (BMPs) to reduce 
nonpoint source pollution losses, relative to dominant row crop systems 
in intensive crop production areas. Several ecohydrological models have 
been developed that can assess soil cycling processes and subsequent 
transport of sediment, nutrients, pesticides and/or other pollutants as 
documented in previous review studies (e.g., Mottes et al., 2014; Col
lender et al., 2016; Habibiandehkordi et al., 2020; Arnillas et al., 2021; 
Borrelli et al., 2021, Fu et al., 2019). A number of these ecohydrological 

Fig. 1. Reported national yields for corn (Zea mays L.) and soybeans (Glycine max L. Merr.) during the period 2010 to 2020 (USDA/NASS, 2021). The dotted lines 
show the yield trends. 

N. Čerkasova et al.                                                                                                                                                                                                                             



Agricultural Systems 210 (2023) 103695

3

models (e.g., APEX, AnnAGNPS, COLI, GIBSI, GWLF, HSPF, IHACRES, 
SWAT, WATFLOOD, WAMVIEW, WEPPI) can be used to simulate the 
effects of in-field or structural agricultural BMPs (Xie et al., 2015; 
Arnillas et al., 2021), irrigation-related BMPs (Uniyal and Dietrich, 
2021) and/or urban landscape BMPs (Kaykhosravi et al., 2018; Lisenbee 
et al., 2021). 

The Soil and Water Assessment Tool (SWAT) has been developed 
over three decades (Arnold et al., 1998, Arnold et al., 2012a; Arnold 
et al., 2012b; Williams et al., 2008a, 2008b; Bieger et al., 2017) and is 
one of the most widely used ecohydrological models in the world used 
for various hydrological and environmental applications (Heistermann 
et al., 2014; Mannschatz et al., 2016; Hossard and Chopin, 2019). The 
model features climate, weather, crop growth, hydrologic, pollutant (e. 
g., nutrients, sediment, pathogens) cycling and transport, and other key 
components that support considerable application flexibility (Arnold 
et al., 2012b; Neitsch et al., 2011). SWAT simulates many types of 
agricultural, irrigation and urban BMPs (Arnillas et al., 2021; Uniyal and 
Dietrich, 2019; Lisenbee et al., 2021), and is adaptable and robust for 
assessing a suite of water resource problems for a range of environ
mental conditions (Gassman et al., 2014, 2022; Krysanova and White, 
2015; Tan et al., 2020; Tan et al., 2021; Wang et al., 2019; Samimi et al., 
2020; Ghimire et al., 2020; Wang and Chen, 2021; Akoko et al., 2021; 
CARD, 2018). Accurate simulation of corn, soybean and other crops is 
critical for applying SWAT to the Corn Belt and other intensive U.S. 
agricultural production regions. Errors in prediction of crop biomass and 
yields can result in incorrect depictions of hydrologic balance, crop 
residues on the soil surface, nutrient cycling and simulation of pollutant 
transport (Nair et al., 2011; Ilampooranan et al., 2021). Improved pre
dictions of crop yields and biomass in SWAT have resulted in more ac
curate overall simulation of hydrology and/or pollutant export for 
watersheds that represent a considerable spectrum of climate, vegeta
tion and other conditions (Strauch and Volk, 2013; Guo et al., 2019; Ma 
et al., 2019; Rajib et al., 2018; Lai et al., 2020; Čerkasova et al., 2021; 
Fernandez-Palomino et al., 2021; Nkwasa et al., 2020, 2022). 

The primary objective of this study is to evaluate crop growth pro
cesses predicted with the updated SWAT+ model (Bieger et al., 2017) as 
implemented in the National Agroecosystem Model (NAM), developed 
by the USDA Agricultural Research Service (ARS) and Texas A&M 
AgriLife Research and Extension (Arnold et al., 2021; White et al., 
2022). The National Agroecosystem Model was designed to cover the 
CONUS and selected drainages of Canada and Mexico and provides a 
fine-resolution national-scale model to address the needs of the USDA 
and many other projects and studies. A key aspect of ongoing NAM 
testing is focused on assessing the capability of SWAT+ to accurately 
represent crop growth processes. Thus, the specific objective of this 
research is to describe: (1) the development and functioning of the 
SWAT+ crop growth module, and (2) assess the capability of SWAT+ to 
simulate corn and soybean yields in the Corn Belt and other U.S. pro
duction regions. 

2. Data and methods 

2.1. SWAT+ description 

SWAT simulates the full spectrum of hydrological processes, sedi
ment and nutrient cycles, as well as vegetation growth including crop 
production. Over the years, the SWAT source code has undergone major 
modifications as documented by Gassman and Wang (2015) through 
SWAT version 2012. The model has evolved to the present SWAT+ code, 
which is a restructured version of the model as described by Bieger et al. 
(2017). Many core functions, described in the extensive SWAT theo
retical and I/O documentation (Arnold et al., 2011; Arnold et al., 2012a, 
2012b; Neitsch et al., 2011) are present and relevant for the current 
version of SWAT+. Changes in SWAT+ include more realistic simulation 
of water areas, different levels of complexity for simulating land phase 
and channel routing processes, the possibility to maintain management 

schedules and operations as databases, flexibility in defining variables 
affecting the timing of management operations and simulation of plant 
communities. Bieger et al. (2017) and documentation available at the 
SWAT webpage (SWAT Development Team, 2022a) give comprehensive 
descriptions of the revised model. In this study we describe changes in 
SWAT+ related to the simulation of crop growth processes. 

Revised crop growth module of SWAT+. 
The original SWAT plant growth submodel (Neitsch et al., 2011) is a 

simplified version of the corresponding module incorporated in the 
Environmental Policy Integrated Climate (EPIC) model (Williams et al., 
1989). However, several plant growth improvements and additions have 
been incorporated into SWAT+ as described here. In the context of this 
section of the paper, we define an “object” as a plain structure that 
contains attributes and methods in the code of SWAT+. The term is 
common within an object-oriented programming dictionary. The 
SWAT+ is programmed using object-oriented programming language 
(Fortran). The code for the revised crop growth module is provided in 
Supplementary Material A. The full and the most up-to date SWAT+
code, revision history, and used databases are located at the SWAT+
source code repository: https://bitbucket.org/blacklandgrasslandmode 
ls/modular_swatplus/src/master/. 

SWAT+ uses a plant specific radiation use efficiency (RUE), inter
cepted photosynthetically active radiation and leaf area index (LAI), to 
calculate potential daily biomass increase (Neitsch et al., 2011). Simu
lated plant growth is reduced by extreme temperature, insufficient 
water, and insufficient available nitrogen or phosphorus as in previous 
SWAT versions (Neitsch et al., 2011). In addition, an algorithm used in 
the Agricultural Policy/Environmental eXtender (APEX) model (Wil
liams et al., 2008a, 2008b; Gassman et al., 2010) which calculates 
aeration stress from excess water as a function of soil water content and 
a plant specific aeration factor, has been included in SWAT+. 

SWAT+ partitions plant parts between leaf, stem, roots, and seeds (as 
shown in the code objects in the Supplemental Material A). By parti
tioning the plant into separate objects, the code is more transparent and 
easier to maintain while the harvest operations have physical meaning 
to the user. SWAT+ uses harvest index (HI), which is specified in the 
harvest management operations. The user may choose to harvest grain, 
root, or biomass. The root harvest operation specifies the ratio of root 
yield to total root biomass. The biomass harvest specifies the ratio of 
biomass yield to total above ground biomass. For the grain harvest 
operation, users input an optimum and minimum harvest index (ratio of 
grain harvested to the total above ground biomass). The actual HI is 
computed as a function of actual and potential water uptake as described 
in Neitsch et al. (2011) and is bounded by the optimum and minimum 
HI. 

A major improvement to the SWAT+ code is the use of an organic 
object containing total carbon, nitrogen, and phosphorus. This object is 
used for each part of the plant including roots, leaves, stalk, seeds, above 
ground, and total biomass. Using an organic object for storing each 
component and partitioning daily allows the model to move nutrients 
from one plant component to another (i.e., above ground to roots). 

Another plant growth addition to SWAT+ is plant competition taken 
from the Agricultural Land Management Alternative with Numerical 
Assessment Criteria (ALMANAC) model (Kiniry et al., 1992). Although 
not implemented in this study, multiple plants can grow at the same time 
and compete for light, water, and nutrients. Light competition is a 
function of LAI and height of competing plants. Water and nutrient 
competition are functions of plant demand and root depth and 
distribution. 

2.2. PHU program incorporation into SWAT+

Heat unit systems quantify the thermal environment of plants and 
are commonly used in phenology models that relate plant growth and 
development to local climate conditions. Plant heat units are defined 
using the Eq. (1): 
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hui = sum(tmeani − tbase),when tmeani > tbase (1)  

where hui is the current sum of heat units on the day (i) of simulation 
from start of seasonal growth in degrees Celsius, tmeani is the average 
daily temperature, and tbase is the base temperature of the plant. A heat 
unit index is calculated by dividing hu by the heat units to maturity. This 
index is used to determine phenological stages of growth including leaf 
development, root growth, grain development, and maturity. 

SWAT model users can access an external potential heat unit (PHU) 
program (SWAT Development Team, 2022b) that calculates the total 
number of heat units required to bring a plant to maturity using 1) long- 
term maximum and minimum temperature data, 2) the base or mini
mum temperature required by the plant for growth, 3) and the average 
number of days for the plant to reach maturity. A slightly modified 
version of the PHU program (Potential Heat Unit Program, (accessed 
10.5.21)) is now incorporated directly into SWAT+. The main difference 
is that it uses days to maturity as an input instead of heat units to 
maturity. The concept of heat units to maturity was developed for 
annual crops but heat units are now used in SWAT+ for the entire 
growing season for both native perennials and annual crops. By input
ting days to maturity, different crop varieties can be included as defined 
by length of growing season (for example, corn varieties for 120-, 110-, 
100- and 90-day maturities). The heat units to maturity calculation in 
the model first computes base zero heat units (the above equation with 
tbase = 0) for the entire year and assumes a planting date when heat units 
exceed 0.15*base zero, which starts the growing season. Then, the model 
calculates heat units from the planting date through the days to matu
rity, using the crop’s base temperature as input. If the maximum days for 
a crop are input (for example, 120 days for corn) and the growing season 
is less than the inputted value, the model essentially sums heat units for 
the entire growing season which represents (and estimates) the 
maximum days to maturity. The algorithm uses maximum and minimum 
air temperature weather generator parameters, specifically the long- 
term average daily temperature values for each month. The SWAT+
model provides heat unit estimates in both the northern and southern 
hemispheres. 

2.3. Built-in calibration procedure 

Two types of data that can be used for model calibration: “soft” and 
“hard” data. Measured time series data (i.e., streamflow, water quality 
parameters, etc.) are defined as “hard” data, whereas information on the 
processes that cannot be directly measured or compared, or aggregated 
statistical information (i.e., average annual estimates of water balance 
components) are defined as “soft” data. Model calibration using soft data 
is called soft calibration, or mass-balance calibration, whereas using 
directly measured data – hard calibration. Such an approach was sug
gested by Seibert and McDonnell (2002) and Arnold et al. (2015) for 
multi-criteria model calibration. Both studies emphasize that the use of 
soft data in model calibration could provide realistic parameter ranges 
and ensure a formal check on the rationality and consistency of internal 
model structures and simulations. The new SWAT+ model has built-in 
soft calibration modules to perform model parameter adjustments for 
water budget and crop yield calibration in a semi-automated way. This 
procedure is further described in the “Model calibration” section of this 
paper. 

2.4. Study site and model setup description 

The NAM covers the entire contiguous U.S. and selected drainages of 
Canada and Mexico, which have contributing (in terms of flow) areas. 
The region is extremely varied in terms of climate, geology, topography, 
agriculture and management practices, which make it an excellent 
application platform for the enhanced flexibility of SWAT+. The NAM 
setup procedure and model structure are different than the majority of 
SWAT/SWAT+ applications due to their complexity and size. Like in the 

earlier versions of SWAT, SWAT+ estimates land processes at HRU level, 
which is a fundamental spatial unit of the model represented by the 
combination of unique land use, soil, and slope characteristics, while the 
water processes are handled at the channel level. The United States 
Watershed Boundary Dataset (WBD) maps the extent of surface water 
drainage for the U.S. using a hierarchical system of nesting hydrologic 
units at various scales, each with an assigned hydrologic unit code 
(HUC). HUC8 maps the subbasin level, analogous to medium-sized river 
basins. A total of 2201 HUC8 models across the CONUS make up the 
NAM. An advanced field-HRU definition and a multi-model routing 
structure are distinctive features of the NAM. 

2.5. Data 

A SWAT+ model requires many datasets to be incorporated in the 
model setup. Standard data includes the topographical information of 
the modeled area, soil types and properties, land use and land man
agement data. To accurately describe the crop growth related processes, 
modelers need to include data for crop management, tile drainage and 
irrigation, tillage and fertilization, and other related datasets (Table 1). 
The latest reported field crop yields at county-level for the 2015–2020 
period (USDA, 2020) were used for model calibration and performance 
assessment. 

2.6. HRU definition 

Agricultural fields delineated by Yan and Roy (2016) are represented 
as separate HRUs, each with its assigned crop or crop rotation and 
management template. These field HRUs in the NAM no longer corre
spond to a distinct combination of land use, soil, and slope, unlike in a 
typical setup of the SWAT model. Instead, field HRUs are parameterized 
based on the dominant soil type and the average slope of the field. 
Although this method is considered suitable for analysis, it may result in 
some loss of information, particularly when the HRU field covers 
significantly different soil/slope conditions. There are 2,457,063 HRUs 
representing corn and 2,638,348 HRUs representing soybean production 
at any point within the simulation period (example of a simulated 
agriculture dominant HUC8 is presented in Fig. 2). Many of these HRUs 
(fields) produce corn and soybeans in two- or more year rotations. The 
average HRU size which represents a field is 24 ha, whereas non-field 
HRUs average 323 ha. 

We used a set of custom tools, programs, and scripts to pre-process 
the data stored in SQL (Structured Query Language) tables and to set 
up the model in a semi-automatic way. These tools use the tabulated 
data and a set of rules to produce a complete SWAT+ model setup with 
parameterized HRUs, management tables, routing information, and 
weather data. Each HUC8 is represented by a separate SWAT+ simula
tion, which, if relevant, receives hydrological and water quality infor
mation from the upstream model and transfers its output to the 
downstream model. We use a model executor program for executing 
each of the SWAT+ simulations in the correct order from upstream 
HUC8s to downstream areas, until the entire CONUS area has been 
simulated. For an in-depth description of the setup and tools, we refer 
the reader to White et al. (2022). 

2.7. Management operations and field categories 

SWAT+ management templates were prepared from existing data 
sources at the national management database using semi-automated 
procedures described in White et al. (2016). The national management 
database uses the existing U.S. Department of Agriculture data sources 
and covers operation scheduling and fertilization application rates for 
all major cultivated crops in the U.S. These templates were used to 
assign management operations, such as planting, tillage, fertilization, 
etc., to each HRU based on field category and other factors. An auto
matic procedure compared land-cover data of each field-type HRU for 
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multiple years. If changes in crop type were detected, then the HRU was 
classified as having multi-crop rotations and assigned the corresponding 
management. Other HRUs were classified as single-crop HRUs. Similar 
to crop rotation, we used an automatic procedure to apply tillage, tiles, 
and irrigation parameters, based on statistics and probability functions. 
Although such a probabilistic approach may result in under- or over- 
estimation of certain processes at a small scale, when averaged over 
large areas these discrepancies do not have a noticeable influence on the 
annual crop yield estimations. The NAM development team members 
are constantly integrating new open-access data into the NAM to 
improve the process representation and the predictive capabilities of the 
model. Future versions of NAM may include products of other studies, 
such as the crop frequency map produced by (Zhang et al., 2020) based 
on Google Earth Engine, which can provide information regarding the 
potential geospatial distribution of crop planting in the future, or the 
irrigated land map generated from MODerate Resolution Imaging 
Spectroradiometer (“Irrigated Lands from Remote Sensing,” 2001). 

We sorted all fields into four categories based on the water sources 
and management: 1) irrigated – fields that have irrigation systems in 
place, and are not tiled; 2) tiled – fields that are rainfed and have tile 
drainage systems implemented, 3) no irrigation no tile – fields that are 
naturally rainfed and have no irrigation or tile drainage systems, and 4) 
irrigated and tiled fields. Subsequently, we analyzed the average annual 
yields for each category in each state in the Corn Belt region (US Mid
west region) which traditionally reports the highest yields for both corn 
and soybeans. The irrigated-tiled field type was excluded from the 
analysis, as there are very few fields in this category, and they therefore 
do not provide any statistical or analytical insight. 

2.8. Decision tables 

In the previous version of SWAT (SWAT2012), planting, tillage, 
fertilization, irrigation, harvesting, and other agricultural management 
activities had to be specified via management operations for each HRU 
in the input files (.mgt). Only irrigation and fertilization could be initi
ated automatically when certain conditions were met, i.e., when the 
plant was under a user-defined water stress (i.e., soil water content or 
plant water demand) or nitrogen stress. However, without having an in- 
depth knowledge of farm-level management practices in the simulated 
area, it is challenging to set up an accurate representation of crop pro
duction and to calibrate and validate the model. Many studies rely on 
statistical data, averaged over large areas like administrative units, 
agricultural, or soil zones, to get a representation of farm practices, 
amounts of applied fertilizers, and crop production (Lai et al., 2020; 
Masud et al., 2019; Pagliero et al., 2019; Panagopoulos et al., 2011; 
Psomas et al., 2016; Udias et al., 2018). SWAT+ facilitates the definition 
of management operations by use of decision tables (DT) as described by 
Arnold et al. (2018). We used a unified decision table (full DT setup is 
given in the Supplementary Material B) to describe some of the land use 
management operations, triggered by pre-defined conditions for the 
typical crops:  

• fert_rot_1 – defines the fertilization (Nitrogen), based on the growing 
stage and plant nitrogen stress 

Table 1 
Summary of datasets used for National Agroecosystem Model (NAM) model 
setup.  

Data Description and source Reference 

Base model setup 
Topography 10 m Digital Elevation Model 

(DEM) from the USGS 
National Elevation Dataset 

(USGS, 2017) 

Land use Cropland Data Layer (CDL) 
2014 CDL land use 

(Han et al., 2012) 

Soil 10 m Gridded Soil Survey 
Geographic (gSSURGO) 
U.S. General Soil Map 
(STATSGO2) 

(Soil Survey Staff, 2020,  
Soil Survey Staff, 2020b) 

Channel/Stream 
network 

National Hydrography 
Dataset Plus Version 2 
(NHD+) 

(Moore and Dewald, 2016) 

Waterbodies: 
Reservoirs, ponds, 
wetlands, etc. 

2011 National Land Cover 
Database (NLCD) 
National Hydrography 
Dataset (NHD) 

(Homer et al., 2012; USGS, 
2015) 

Hydrologic Unit 
boundaries 

Watershed Boundary Dataset 
(WBD) 

(USGS, 2015) 

Cropland field 
boundaries 

Combination of weekly 30 m 
Web Enabled Landsat, 
(WELD), Landsat 5 Thematic 
Mapper (TM) and Landsat 7 
Enhance Thematic Mapper 
Plus (ETM+) imagery. 

(Yan and Roy, 2016) 

Irrigation Summary of irrigated and 
non-irrigated planted acres 
for years 2010 to 2018 

(USDA, 2020)  

Observations 
Weather Observed daily weather data 

and data derived from 
Parameter-elevation 
Regressions on Independent 
Slopes Model (PRISM) 

(Gao et al., 2020;  
GeoPlatform Curator, 
2019) 

Upland water 
balance 
components 

Precipitation, surface runoff, 
ET, total water yield, 
baseflow, reassigned by 
HUC8 used for the soft 
calibration of the water 
balance 

(Baffaut et al., 2020), ( 
Reitz et al., 2017) 

Water management Estimated surface and ground 
agricultural irrigation 
withdrawals by county, total 
surface and groundwater 
withdrawals for municipal 
usage by county 

(Dieter et al., 2018) 

Land management 
(planting, 
fertilization, etc.) 

Expert panel and USDA 
Natural Resources 
Conservation Service 
personnel at the HUC8 level 
and derived management 
template 

(White et al., 2016) 

Tillage Tillage intensity by crop type 
and HUC8 

(Baker, 2011) 

Tile drains Summarized data on county 
level estimates of cropland 
under tile drainage 

(Schwartz, 2015) 

Point sources Measured pollutant 
concentrations from 
permitted wastewater 
discharge facilities, derived 
from the National Permit 
Discharge Elimination 
System (NPDES); Estimated 
pollutant loads per capita 
using the U.S. Census 
population data (Urban). 

(Maupin and Ivahnenko, 
2011; Skinner and Maupin, 
2019; US Census Bureau, 
2019) 

Crop yields NASS Census of Agriculture 
County level yields for major 
field crops 

(US Census Bureau, 2019)  

Table 1 (continued ) 

Data Description and source Reference 

Commercial 
Fertilizer 
ApplicaitIon 

NASS Census of Agriculture 
fertilizer application data 

(USDA, 2019a, 2019b) 

Structural 
Conservation 
Practices 

Conservation data for 
terraces, waterways, filter 
strips, riparian buffers, 
contour farming, and strip 
cropping 

(White et al., 2017)  
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• fert_sprg_side defines the fertilization (Phosphorus), based on the 
growing stage and plant phosphorus stress  

• irr_str8 and irr_str8_unlim – define drip irrigation initiation triggered 
by plant water stress  

• irr_sw75 and irr_sw75_unlim – define sprinkler irrigation initiation 
triggered by plant water stress 

• pl_hv_ccsws – defines the plant and harvest operations of corn, soy
beans, and winter wheat in rotation, based on the year  

• pl_hv_corn – defines the planting and harvesting of corn based on soil 
moisture and air temperature (accumulation of PHU)  

• pl_hv_corn_sb – defines the planting and harvesting of corn and 
soybeans in rotation, based on soil moisture, air temperature 
(accumulation of PHU), and year 

Fig. 2. Example of a HUC8 model and its location in the U.S., with identified corn and soybean fields for the year 2017, in the Corn Belt represented as unique 
Hydrologic Response Units. 
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• pl_hv_soyb – defines the planting and harvesting of soybeans based 
on soil moisture and air temperature (accumulation of PHU). 

The water and nitrogen stress calculations are provided in Chapter 
5:3.1. of the Theoretical Documentation (Neitsch et al., 2011). 

2.9. Model calibration 

As an initial step we performed the water balance calibration using 
soft data (see Table 1. Upland water balance components) to verify that 
the processes associated with the hydrological cycle are represented 
adequately by reducing the percent difference of the simulated average 
annual water balance components (precipitation, surface runoff, ET, 
total water yield, baseflow) compared to the ones derived from Baffaut 
et al. (2020), supplemented by Reitz et al. (2017), and reassigned by 
HUC8. For a detailed description of the water balance calibration, the 
reader is referred to White et al. (2022). After several calibration iter
ations we obtained satisfactory results for water yield (R2 = 0.932 and 
average annual relative error for total flow fell below 1%) and pro
ceeded with the second step, the calibration of crop parameters. 

2.10. Crop and crop yield associated parameters 

There are several parameters in SWAT+ that impact plant growth 
and crop yields. The parameters used for the calibration of crop yields in 
the NAM are: 1) plant uptake compensation factor (epco), 2) pest stress 
(pest_stress), 3) maximum potential leaf area index (lai_pot), and 4) HI 
for optimal growing conditions (hi_pot) (Table 2). These four parameters 
were selected based on their significant impact on crop yield simulation, 
as reported in previous studies (see Kiniry et al., 1997, 2004, Kiniry and 
Bockholt, 1998, Xie et al., 2001, Yuan et al., 2017, Setiyono et al., 2008, 
Xiong et al., 2016, Kenichi, 2006; Choruma et al., 2019), and our in
sights into the model sensitivity. The calibration procedure is a heuristic, 
one variable at a time approach similar in concept to the procedure 
developed by Kannan et al. (2008) for soft calibration of a national water 
balance by HUC8. Observed average county-level yields from the Census 
of Agriculture recalculated for each HUC8 are input to the model. The 
initial simulation is performed with default input values. Each HUC8 
model is executed in the correct order from upstream to downstream 
areas and the routing information is transferred between the HUCs. The 
model then calculates the difference between simulated and observed 
yields, adjusts calibration variables based on the percent difference, and 
reruns the model with the updated variables. The procedure is coded in 
SWAT+ so no other interface or software is needed. It is simple and 
efficient, requiring a maximum of 13 simulations to minimize the dif
ference between simulated and observed yields. 

SWAT+ uses a plant water uptake compensation factor (epco) to 
allow water uptake from deeper soil layers to occur. As epco approaches 
1.0, water uptake from deeper layers is allowed to compensate if water is 
unavailable in the upper layers. As epco approaches 0.0, the original 
uptake distribution is followed without allowing lower layers to 
compensate. 

The parameter pest_stress is applied directly to the HI at harvest to 
account for the impact of insects, disease, and weeds on yields. The 
APEX model uses soil cover by plant biomass, temperature, and 30-day 

accumulated rainfall in an algorithm that increases stress in warm, moist 
periods with adequate ground cover and decreases in cold temperatures. 
This approach is realistic, but difficult to parameterize and validate, so 
we chose to input a stress factor instead. The pest_stress is allowed to 
vary from 0 to 10%. 

The default values for parameter lai_pot in the plant growth database 
are based on average plant densities in dryland (rainfed) agriculture. 
The parameter may need to be adjusted for drought-prone regions where 
planting densities are smaller or irrigated conditions where densities are 
greater. We define the allowable variation of lai_pot to range by ±1 from 
the value in the plant database. 

For corn and soybeans the value of HI defines the fraction of grain 
that is removed from the plant during harvest. Two harvest indices are 
provided in the database, the HI for optimal growing conditions (hi_pot) 
and the HI under highly stressed growing conditions (hi_min). The value 
of hi_pot is allowed to vary to account for differences in conditions, 
uncertainty in field measurements, and different crop varieties. 

2.11. Crop yield calibration procedure 

The crop yield calibration algorithm uses one variable at a time in the 
following order: 1) epco, 2) pest_stress, 3) lai_pot, and 4) hi_pot (Fig. 3). 
SWAT+ will run several simulations, called iterations in the context of 
the procedure, and adjust parameter values based on the difference 
between observed and simulated yields. After each iteration, the pro
cedure will loop and repeat the process. There is a different number of 
iterations for each variable (defined as MAX iterations in Fig. 3). The 
model will stop iterating when the mean yields are within 3% difference 
with the observed. The code for the crop yield calibration subroutine in 
SWAT+, called calsoft_plant, is provided in Supplementary Material A. 

The first iteration uses the initial default values shown in Table 2. 
The initial change applied to each parameter is a function of the dif
ference between the simulated and observed yields (Table 3). After the 
initial change, the algorithm uses linear interpolation in subsequent it
erations (simulations). Four additional simulations are needed for epco 
because it is highly non-linear as it approaches zero. No additional 
simulations were needed for pest_stress since it has a direct linear rela
tionship with HI and thus with yield. Only two additional simulations 
were needed for both lai_pot and hi_pot. 

2.12. Model evaluation 

To quantify the difference between the simulated and reported 
annual average crop yields and to assess model calibration performance, 
we used coefficient of determination (R2), relative error (RE) and 
Normalized Root Mean Square Error (NRMSE). We recalculate the re
ported by the Census of Agriculture corn and soybean county-wise yields 
to the HUC8 level to harmonize the comparison and to display it on the 
same spatial unit. The modeled crop yield output was recalculated to 
bushels per acre and adjusted for the moisture content to match the units 
used by the Census of Agriculture (US Census Bureau, 2019). 

3. Results and discussion 

3.1. Spatial variability of model parameters 

Assigned epco, lai_pot, hi_pot, and pest_stress values for corn and 
soybeans after calibration varied spatially (Fig. 4). For a more focused 
analysis, specific SWAT+ models (executed at the HUC8 level) were 
excluded where the cultivated field areas for corn or soybean crops were 
<500 acres (2 km2). This threshold was defined to deal with uncertainty 
in areas where total crop areas are very small and could have resulted 
from the misclassification of land use or other errors, which are difficult, 
if not impossible, to trace on a national scale. 

The crop yield calibration procedure returned higher potential LAI 
and HI values in irrigated areas and areas with reported higher corn 

Table 2 
Crop yield calibration parameters and their initial values and ranges for corn and 
soybeans (soyb).  

Variable Initial Value Min Lower Limit Max Upper Limit 

epco 1.0 0.0 1.0 
pest_stress 0.05 0.0 0.1 
lai_pot corn = 5.0 corn = 4.0 corn = 6.0 

soyb = 4.0 soyb = 3.0 soyb = 5.0 
hi_pot corn = 0.50 corn = 0.425 corn = 0.575 

soyb = 0.33 soyb = 0.235 soyb = 0.385  
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yields (Fig. 4). Kiniry et al. (1997) reports potential LAI values for corn 
ranging from 2.8 to 4.1 in nine U.S. Locations and HI values ranging 
from 0.46 in New York to 0.58 in Nebraska and Georgia. In later studies 
(Kiniry et al., 2004; Kiniry and Bockholt, 1998), areas with higher corn 
yields (>10 t/ha or > 147 bu./ac) were reported to have LAI values of 
6.0 or higher. In the same studies the minimum HI was set to 0.30 and 
the maximum to 0.54. The authors report that in some cases the 
parameter maximum values for HI resulted in overestimation of crop 
yields (Kiniry and Bockholt, 1998; Xie et al., 2001). Considering that 
crop yields increased substantially over the last decade (Fig. 1), we 
expect the HI to have increased as well. The crop yield calibration 
procedure in SWAT+ was able to correctly identify the increase in corn 
yield and assigned higher HI values, ranging from 0.42 to 0.57. In 
particular, the maps show the irrigated plains, irrigated Mississippi 
delta, and parts of Iowa with highest HI values, where crop yields are 
near yield potential. 

The SWAT+ crop yield calibration procedure returned lai_pot values 
for soybeans between 4.6 and 6.0 (Fig. 4), which falls within the re
ported ranges of studies focused on soybean LAI estimation and 

modeling. Yuan et al. (2017) reported a mean LAI value of 4.9 from 46 
varieties of soybeans produced in a case study site located in the North 
China Plain with conventional agricultural management practices. 
Setiyono et al. (2008) analyzed LAI dynamics and used a sink-driven 
approach (driven by the recursive algorithm) to evaluate LAI simula
tion of soybean under near-optimal environments. Their data from 
irrigated field experiments at two locations in Nebraska report an 
average maximum LAI value of 6.4 (Setiyono et al., 2008). 

Assigned soybean HI ranges from 0.23 to 0.39, and the highest 
yielding HUC8 areas fall within 0.33–0.36, which is close to the reported 
values by Krisnawati and Adie (2015), where the average HI of 29 
soybean genotypes was 0.38. Descriptive statistics of traits over 32 
soybean families from high yielding varieties, drought tolerant varieties, 
and diverse ancestry classes show HI values between 0.2 and 0.5 (Lopez 
et al., 2021), which is in line with the SWAT+ parameterization results 
of the CONUS. 

SWAT+ model functionality does not support any plant rooting 
depth restrictions and uses the epco parameter to allow the plant to 
compensate for the water uptake distribution with depth. The parameter 
is non-linear, so that the water uptake is not restricted until the value of 
epco falls below 0.2. This behavior explains the almost binary assign
ment of epco values (0 or 1) through the HUC8s for both corn and 
soybeans, meaning that, in most cases, the water uptake from deeper 
layers is either fully allowed or fully restricted. 

The calibration procedure pushes the pest_stress parameter in high 
yielding areas closer to zero and low yielding areas closer to 1 and is 
applied directly to the HI. The assigned values for pest_stress through the 
modeled region range between 0.01 and 0.1 (Fig. 4) for both corn and 
soybeans. The pest_stress values of 0.04–0.05 were assigned to mostly 
high-yielding areas. 

In the default or initial setup, we used the same corn and soybean 
database entry across the entire U.S. We then adapted the management 
operations, such as planting dates and potential heat units required to 
reach maturity, as well as the above-mentioned parameters: epco, lai_
pot, hi_pot, pest_stress, for each HUC8 to represent the growing 

Fig. 3. Built-in crop yield calibration procedure – simplified flowchart.  

Table 3 
Crop yield calibration parameter sequence and adjustment to the NAM.  

Sequence Parameter Change 
Type 

Initial change Number of linear 
interpolations 

1 epco absolute 
value 

if (diffpct ≥ 10%) 
chg_init = − 0.01 * 
difffrac + 0.06 
if (diffpct < 10%) 
chg_init = 1.0 

4 

2 pest_stress absolute 
value 

difffrac 0 

3 lai_pot absolute 
change 

0.5 * difffrac 2 

4 hi_pot absolute 
change 

0.005 * difffrac 2  
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Fig. 4. Spatial variability of the calibrated parameters (epco, lai_pot, hi_pot, pest_stress) values for corn and soybeans (Soyb) in HUC8s with a cultivated field area of 
>500 acres (2 km2). 
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conditions and the differences in plant growth across the U.S. Studies 
have indicated that the maximum corn yields differ among crop hybrids, 
and for the same hybrid across environments, i.e., across locations or 
across seasons at the same location (Tokatlidis, 2013). Without knowing 
the exact planting areas, hybrids, and their characteristics, it is impos
sible to reach a particular parameterization for fitting plant populations 
on the national scale. Hence, we adopted the abovementioned approach 
to account for different climatic conditions, pest stress, generic plant 
growing, and HI parametrization in the model, which demonstrates the 
ability to provide satisfactory crop yield results for the CONUS. 

3.2. Model calibration and simulation results 

After the crop yield calibration procedure, the simulated average 
annual corn and soybean yields show good agreement with the reported 
yields for the 2010–2015 period for crop areas >500 acres (200 ha) 
(Fig. 5). Several simulated soybean production outliers (HUC8 models) 
can be recognized on the graph (Fig. 5 right). We detected an over
estimation of cropland areas for soybeans in some of the HUC8 simu
lations. Other outliers may have resulted from misclassification of fields. 

We did not assess the quality of the yield data reported by USDA/ 
NASS (2021). Grassini et al. (2015) compared the Agricultural Census 
corn yields of Nebraska to average actual farm yield data independently 
collected through the Nebraska Natural Resources Districts. Their 
analysis reports only 6% difference between the average yields calcu
lated based on the two data sources. 

Corn and soybeans are grown in varying environmental conditions 
under irrigated, rainfed and tiled farming systems. Thus, Genotype-by- 
Environment-by-Management (G x E x M) interactions affect produc
tion stability of both crops. Ultimately, the model should demonstrate 
the ability to reproduce G x E x M interactions across a relevant range of 
potential yields (Grassini et al., 2015). With high coefficient of deter
mination for both corn (R2 = 0.99 for total yields, R2 = 0.9 for yields per 

unit area) and soybean (R2 = 0.99 for total yields, R2 = 0.7 for yields per 
unit area) production across the CONUS, we conclude that the SWAT+
implementation in the NAM is well suited to reproduce the corn and 
soybean production processes at national level. 

The model can simulate average annual corn and soybean yields in 
most of the high-yielding regions in the mid-west with low relative error 
(RE) (Fig. 6). The RE in the high yielding areas fall within the ±5% 
interval. Highest RE is detected in the Great Plains area, where the 
model tends to underpredict the average annual yield per unit area by 
15% for corn, and >30% for soybeans. Semi-arid regions, such as the U. 
S. Great Plains area experience limited and inconsistent rainfall, which 
makes it challenging to accurately predict water availability for crops, 
moreover, to model the irrigation demand. Large temperature fluctua
tions between day and night, as well as seasonally, impact crop devel
opment and yield potential, making it difficult to accurately model crop 
growth within the region. There is also limited data available on crop 
performance in this region as the cropland area is smaller, where some 
agricultural fields/countries might not get reported but included in the 
model. With less calibration data we have more uncertainty in our re
sults and performance statistics. The combination of all these factors is 
the reason for RE being higher in this region. 

3.3. Yield distribution by field category 

The analysis of the field categories indicates that most of the high- 
yielding fields have no irrigation or tile drainage systems (Fig. 7). The 
Corn Belt region is characterized by fertile soils and favorable meteo
rological conditions for optimal crop growth, therefore rainfed fields in 
this area naturally provide high yields. Tile drainage or irrigation sys
tems can provide a boost in production in areas where conditions are not 
optimal. Some studies show an increase and more stable yields when 
irrigation or tile drainage systems have been implemented, controlling 
the shallow water table or minimizing nutrient leaching (Helmers et al., 

Fig. 5. Average annual observed (as reported by the Census of Agriculture for 2010–2015) and simulated corn (left) and soybean (right) production at HUC8 level. 
Size of the circles indicates the total area of the corn and soybean within each HUC8. 
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2012; Rizzo et al., 2018; Wayne Skaggs et al., 2012). Similar results can 
be seen in Kansas, Nebraska, North and South Dakota, where the average 
corn and soybean yields of irrigated fields skew toward higher yields 
(Fig. 7). Corn and soybean production under tile-drained fields tend to 
be slightly lower than that of the irrigated fields and similar to corn and 
soybean production in the “no irrigation or tile” areas. It is reasonable to 
assume that without tile drainage corn or soybean production might not 
be optimal or even not feasible in those areas. Due to the large number of 
modeled fields represented in Fig. 7, it is difficult to draw firm conclu
sions on the productivity of specific systems. Hence more detailed 

analysis is needed to determine the effectiveness of each system on corn 
or soybean crop productivity. 

We further analyzed the distribution of field categories and 
compared the modeled yields with observations. The information on 
field location, field areas, observed and simulated yields were overlaid 
and summarized in Fig. 8. Fig. 8 shows the percentages of fields by the 
defined category (“no irrigation no tile”, irrigated, or tiled) in each state 
in the Corn Belt and their simulated and observed corn and soybean 
yields. Each dot represents all field areas in the same category (“no 
irrigation no tile”, irrigated or tiled) in the models (HUC8) located 

Fig. 6. Modeled average annual corn and soybean yields in bushels per acre and relative error at HUC8 level.  
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within the states in the Corn Belt. The entire corn or soybean producing 
area in a single simulation (HUC8) is considered as 100%, hence the 
percentage of a field category in a single HUC8 may fall within 0–100%. 

The trendlines indicate a good agreement between the observed and 
simulated yield distributions within the Corn Belt. In most cases the “no 
irrigation no tile” fields produce stable yields per field, except in Kansas, 
Nebraska, North and South Dakota, where irrigated fields tend to 
outperform the rainfed-only fields. We observed one issue with the 
model estimates: the trend for irrigated soybean fields in Kansas pre
dicted by NAM is different from the observed (Fig. 8). This is the 
outcome of the earlier recognized outliers (Fig. 5), where we detected an 
overestimation of cropland areas in some of the modeled areas for the 
soybean fields. 

The yield trendlines in Fig. 8 for corn and soybeans of the tile- 
drained fields show stable yields, with positive slopes in many states i. 
e., Illinois, Indiana, Iowa, Michigan, Minnesota, South Dakota, Wis
consin, meaning that the tile-drainage installation might boost corn or 
soybean production in these areas. In Ohio tile-drained fields perform on 
par with areas where such systems are not installed. Nevertheless, these 
findings need further analysis and robustness testing. 

3.4. The improvements of SWAT+

The application of SWAT+ is extremely evident when modeling 
large-scale areas. It allows for greater flexibility and customization of 
the setup to tailor the model to specific needs, locations, and research 
questions. In case of this study, we want to particularly highlight the 
benefits of model input file restructuring: where in previous version of 
SWAT, each individual HRU would have several setup files associated 
with it. In SWAT+ there is a single HRU data file with all the necessary 
information and key pointers to databases. Such a complex model as the 
NAM would require hundreds of millions of input files, if modeled using 
SWAT2012 or earlier versions, which would render the entire applica
tion as infeasible. The additional benefit of using SWAT+ is provided by 
the flexible setup using decision tables to manage processes, i.e., irri
gation or fertilization. The added benefit of decision tables makes the 
model highly re-usable and simulations with adjusted parameters easily 
repeatable. 

The novelty of large-scale SWAT+ crop modeling study with a field- 

HRU setup lies in the ability to capture the heterogeneity and variability 
of the crop environment, and to account for the complex interactions 
between different factors. By integrating data from various sources, the 
NAM can provide a detailed picture of the current state of crop systems 
and predict their future behavior under different scenarios. 

4. Conclusions 

This study used the SWAT+ model to simulate corn and soybean 
yields across the Contiguous United States. The National Agroecosystem 
Model was set up with each HUC8 region represented by an individual 
SWAT+ model, and over 2.5 million individual fields were included in 
the comprehensive modeling setup. SWAT+ provided the needed flexi
bility and functionality to implement such a modeling endeavor. Mod
ifications to the plant growth module in SWAT+ allowed for potential 
daily biomass increase calculation, aeration stress from excess water 
estimation, scheduling independent operations across the vast area, and 
more. The semi-automated soft-calibration module proved to be a 
powerful and fast tool for crop production parameter calibration. The 
NAM was tested against average annual corn and soybean yields for the 
2005–2015 period, with good agreement between the reported and 
simulated yields. 

The implementation of SWAT+ within NAM was able to reliably 
capture the spatial trend of corn and soybean production over different 
regions, land management, and climatic conditions in the U.S. A field- 
type analysis was performed, providing further insight into spatial dis
tribution of corn or soybean yields and trends. Most of the high-yielding 
fields are rainfed, while tile drainage or irrigation systems provide a 
boost in production in areas where conditions are not optimal. 

The model accuracy is reliant on the accuracy of input and calibra
tion data. Better methods are needed to estimate inputs where obser
vation information is not available. Overall, this study demonstrates the 
usefulness of SWAT+ for simulating crop yields at a large scale, and the 
unique setup approach and crop yield calibration strategy, with some 
modification, can be applied to other areas worldwide. 

Software availability 

SWAT+ is an open access software, programmed in Fortran. The 

Fig. 7. Distribution of field categories (irrigated, no irrigation no tile, tiled) and yields for corn and soybeans.  
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source code is constantly maintained and can be found at: https://bitbuc 
ket.org/blacklandgrasslandmodels/modular_swatplus/src/master/. A 
user support group open for questions and discussions related to the 
model can be accessed here: https://groups.google.com/d/forum/swatp 
lus. 
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Čerkasova, N., Umgiesser, G., Ertürk, A., 2021. Modelling framework for flow, sediments 
and nutrient loads in a large transboundary river watershed: a climate change impact 
assessment of the Nemunas River watershed. J. Hydrol. 598, 126422 https://doi. 
org/10.1016/j.jhydrol.2021.126422. 

Chen, Y., Marek, G.W., Marek, T.H., Porter, D.O., Brauer, D.K., Srinivasan, R., 2021. 
Simulating the effects of agricultural production practices on water conservation and 
crop yields using an improved SWAT model in the Texas High Plains, USA. Agric. 
Water Manag. 244, 106574 https://doi.org/10.1016/J.AGWAT.2020.106574. 

Choruma, D.J., Balkovic, J., Odume, O.N., 2019. Calibration and validation of the EPIC 
model for maize production in the eastern cape, South Africa. Agronomy 9, 494. 
https://doi.org/10.3390/agronomy9090494. 

Collender, P.A., Cooke, O.C., Bryant, L.D., Kjeldsen, T.R., Remais, J.V., 2016. Estimating 
the microbiological risks associated with inland flood events: bridging theory and 
models of pathogen transport. Crit. Rev. Environ. Sci. Technol. 46, 1787–1833. 
https://doi.org/10.1080/10643389.2016.1269578. 

Dieter, C.A., Maupin, M.A., Caldwell, R.R., Harris, M.A., Ivahnenko, T.I., Lovelace, J.K., 
Barber, N.L., Linsey, K.S., 2018. Estimated use of water in the United States in 2015: 
U.S. Geological Survey Circular 1441, 65–p. https://doi.org/10.3133/cir1441. 

Duriancik, L.F., Bucks, D., Dobrowolski, J.P., Drewes, T., Eckles, S.D., Jolley, L., 
Kellogg, R.L., Lund, D., Makuch, J.R., O’Neill, M.P., Rewa, C.A., Walbridge, M.R., 
Parry, R., Weltz, M.A., 2008. The first five years of the conservation effects 
assessment project. J. Soil Water Conserv. 63, 185A–197A. https://doi.org/10.2489/ 
jswc.63.6.185A. 

FAO, 2018. How to feed the world, high level expert forum - global agriculture towards 
2050. Island Press/Center for Resource Economics, Washington, DC. https://doi. 
org/10.5822/978-1-61091-885-5.  

Fernandez-Palomino, C.A., Hattermann, F.F., Krysanova, V., Vega-Jácome, F., 
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